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Abstract

Cryptocurrencies have prompted a shift away from classic security attacks toward ransomware-
based extortion. To better understand the impact of cryptocurrencies on the cybersecurity
landscape, we conduct a comparative analysis of cybersecurity metrics prior to and after the
adoption of cryptocurrency using a series of connected software use models in the presence of
security externalities. In the proposed framework, we endogenize the actions of both heteroge-
neous consumers and attackers, with entry of the latter being driven by both the size of the
unpatched consumer population and, as a subset of it, the size of the ransom-paying consumer
population. We first examine users’ adoption and patching behavior under both security scenar-
ios. We explore how changes in attacker entry costs impact outcomes under both conventional
and post-crypto ransomware threat landscapes. We show that ransomware scenarios may be
more desirable than conventional ones when attacker entry costs are low, provided that the
gains from entering with standard attacks instead under the ransomware scenario are not too
high. However, under such scenarios, social welfare can increase under the same conditions that
lead to larger ransoms being demands and a higher expected total ransom being paid, which
presents a conundrum to policymakers. We also examine the impact of market parameters as-
sociated with security losses from conventional attacks and residual losses when victims pay in
ransomware attacks.
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1 Introduction

Cryptocurrencies (crypto), the most prominent type of blockchain-based digital asset, have been

heralded as a game changer for the payments industry, marking the beginning of an era of decen-

tralized finance (DeFI), with promise of near-instant secure transactions, storage of funds in secure

digital wallets, and accessibility via Internet from anywhere (Levy 2022). But for all the sung

praise and promise, it is undeniable that there is a real dark side related to the adoption of crypto;

namely, cryptocurrencies have become the go-to instrument for transactions associated with cyber-

criminal extortion-type activity due to the pseudonymity of crypto transactions (Black 2022). Such

extortion-based cyberattacks, commonly referred to as ransomware attacks, have rapidly grown in

frequency and impact as seen in the Financial Crimes Enforcement Network (FinCEN) 2011-2021

data reproduced in Figure 1.
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Figure 1: Data sourced from FinCEN ransomware trends report (FinCEN 2022). Values are
computed as of “incident date” which reflects the date associated with payments.

Ransomware did exist prior to the introduction of Bitcoin in 2009 (even going back to 1989),
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but its financial impact in earlier decades was negligible.1 Once Bitcoin adoption gathered steam

and crypto transaction tools and exchanges evolved into the mainstream, the stage was set for

malicious actors to take ransomware to a whole new impact level, which occurred in 2013 when

CryptoLocker became the first major ransomware strain combining advanced encryption locking

with ransom demands in cryptocurrency (Crowdstrike 2022). Going beyond FinCEN’s 2011–2021

data, researchers estimate that ransom payments reached �1.1 billion in 2023 (Chainalysis 2024).

While modern crypto-fueled ransomware attacks initially targeted proprietary software, we also

see a large volume of these attacks on open-source software (OSS), particularly post 2021.2 More

broadly, cybercriminals are attacking OSS across industries using a variety of attack vectors and

payloads even going beyond ransomware (Statista 2024). In fact, according to a 2024 study by

Sonatype, 704,102 malicious packages targeting OSS have been identified since 2019 (Maudrill

2024). The reason for malicious hackers’ interest in exploiting OSS vulnerabilities is simple: nowa-

days, leveraging OSS is a critical aspect of most firms’ IT strategies. With OSS, a firm maintains

significant flexibility with regard to customization, less lock-in with software vendors, lower software

costs, and more. What is particularly noteworthy is the extent to which OSS components are being

leveraged. The number of OSS contributions to GitHub (one of the most prominent repositories of

OSS projects) reached 301 million in 2023 alone and nearly 30% of Fortune 100 companies started

their own open source program offices to coordinate OSS strategies (GitHub 2024). RedHat’s The

1The first documented ransomware attack, the AIDS Trojan (also called the “P.C. Cyborg attack”) occurred in
1989 (Murphy-Kelly 2021).

2The Apache Log4j (Log4Shell) Java logging vulnerability, which exposed a large swath of web servers and services
(including those using VMware Horizon) has been extensively used in the deployment of ransomware attacks starting
at the end of 2021 and throughout 2022 (Tung 2022, Arctic Wolf Labs 2022). DarkRadiation, written in Bash script
that targeted Red Hat, CentOS, and Debian Linux distributions as well as Docker cloud containers was spread via an
SSH worm (Lakshmanan 2021, Zahravi 2021). Attackers such as the notorious REvil gang who was responsible for
shutting down the operations of JBS, the world’s largest meat supplier, and extorting �11 million in ransom, are now
porting their ransomware to Linux (Vanian 2021). Being able to attack bare metal hypervisors like VMware’s ESXi
as well as Linux-based network storage devices is a lucrative opportunity for hackers; indeed, ransomware strains
DarkSide and RansomEXX have evolved with OSS in their sights (Winder 2021, Spring 2021). Year 2022 saw an
acceleration of Linux encryptors being developed and deployed by the most prominent ransomware gangs including,
in addition to the aforementioned examples, Conti, LockBit, HelloKitty, AvosLocker, Babuk, PureLocker, Mespinoza,
Hive, IceFire (Gatlan 2023).
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State of Enterprise Open Source reports that 90% of surveyed IT leaders already use enterprise

OSS (Red Hat 2021). According to Synopsis (2024), 96% of commercial codebases leverage to some

extent OSS code (with 77% of the total code originating from OSS). Among surveyed codebases,

84% contained OSS security vulnerabilities (with 74% of the codebases including high-risk vulner-

abilities), and no less than 91% contained components that were at least ten versions behind the

current version of the component. This current industry reality presents hackers with opportunities

to land widely disruptive attacks on OSS vulnerabilities, with substantial associated losses.

When examining the economics of open source as it relates to security, certain attributes are

particularly salient. OSS is typically available for free and, therefore, can engender significantly

larger user populations than its commercially available counterparts. Increased usage often goes

hand-in-hand with increased risky usage in that a sizeable portion of the user population will find

it incentive compatible to remain unpatched. Thus, historically with traditional (non-ransomware)

attacks, risk management has centered on mitigation via policies to improve patching behavior

(August and Tunca 2006). However, in the face of ransomware, this calculus gets shifted because

users have an additional opportunity to contain losses by paying out ransoms instead. To be sure,

a user with intent to pay ransom as part of its strategic defense clearly has dampened incentives to

patch. Ceteris paribus, possessing an option to pay ransom instead of incurring larger losses can

be good for consumer surplus. At the same time, attackers’ strategies are shifting as they consider

both ransomware and standard attacks. Ransomware can certainly streamline the monetization

process by extracting payments directly from the victims; yet aggressive attacks, larger payouts,

and publicized successes can instead lead to higher attack volumes and ultimately deter unpatched

consumption (Jeffery and Ramachandran 2021).

A common presumption in the economics of cybercrime is that raising hacker costs and risks

would be beneficial to cybersecurity. For example, national security strategy in the UK dictates
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that “we need to raise the cost, raise the risk, and reduce the reward of cyber criminals’ activity”

and, similarly in the US, aims to “disrupt and dismantle threat actors” and has an approach that

specifically includes “ targeting the illicit cryptocurrency exchanges on which ransomware operators

rely and improving international implementation of standards for combatting virtual asset illicit

finance” (UK 2016, White House 2023). Attacker costs are critical in that they can significantly

sway attacker entry behavior. However, the shifting of attacker entry costs can have a significant,

differential impact when examining a pre-crypto environment versus a post-crypto one characterized

by the presence of ransomware. Moreover, the presumption that raising costs will be helpful needs

further consideration in that the strategic interaction between user behavior (adoption, protection,

and ransom-paying strategies) and attacker behavior (entry and attack strategy) is highly complex.

Against this backdrop, in this paper, we perform a comparative analysis of the security land-

scapes and market outcomes under both a pre-crypto context characterized by traditional attacks

and a post-crypto context where ransomware becomes a possibility. Given the enabling role that

crypto plays in the execution of digital extortion attacks, this comparison allows us to identify the

impact of cryptocurrency on cybersecurity. As part of our research agenda, we aim to shed light on

the role of attacker entry costs in shaping cybersecurity market outcomes, while particularly high-

lighting that increased costs can unexpectedly be detrimental in the post-crypto ecosystem. Thus,

reducing attacker entry costs may possibly lead to superior post-crypto outcomes in comparison to

pre-crypto ones.

To the best of our knowledge, this is the first study to execute such a comparison while en-

dogenizing the actions of both (a continuum of) heterogeneous consumers and (a continuum of)

heterogeneous attackers, with the entry of the latter being driven by both the size of the unpatched

consumer population and, as a subset of it, the size of the ransom-paying consumer population.

Moreover, by focusing on a relatively new warfront in ransomware attacks, namely attacks on OSS,
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we further extend the research agenda on the economics of ransomware.

Specifically, we study how attackers are drawn differently to vulnerable software across pre-

crypto and post-crypto scenarios. Post-crypto, we characterize how ransomware-specific metrics

such as the ransom-paying population size and expected total ransom paid are impacted by attacker

entry costs, a relevant moderating variable for our comparative analysis as discussed above. We

explore how consumer and attacker strategic behaviors ultimately impact social welfare, as well as

making comparisons before and after cryptocurrencies changed the landscape. There are multiple

economic forces at work. Under both settings, lowered entry barriers for attackers can increase

pressure on consumers from a security risk perspective but can also dilute attacker returns due

to crowding out effects. However, in the post-crypto ransomware setting, entering attackers also

strategically choose the attack mode (with or without ransomware payload) and the ransom amount.

This provides them some greater flexibility to manage the crowding out effect. Moreover, when some

attackers choose ransomware, a portion of the unpatched consumers are able to mitigate, to some

degree, the attack losses through ransom payments in the post-crypto setting. These forces shape

the equilibrium segmentation of consumers and attackers, with the overall net effect on outcomes

hinging on the extent of each segment’s presence. Because, in equilibrium, unprotected consumers

segment into ransom payers and non-payers, and attackers segment into those who enter with

conventional attacks and those who enter with ransomware attacks, there are significantly more

complex dynamics under post-crypto ransomware setting relative to the pre-crypto one. A key

contribution of our study is that we formally demonstrate that the presence of ransomware can be

socially beneficial, even in the presence of strategic attackers making self-interested entry decisions.

We show that a decrease in attacker entry costs can unexpectedly shift post-crypto welfare outcomes

higher relative to the pre-crypto scenario. Moreover, we also highlight that welfare can be increasing

in the attacker entry costs on the same region where ransomware-specific metrics (expected ransom
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paying population, expected ransom demand, and expected total ransom paid) are also increasing.

For example, in that one might expect that decreasing expected total ransom paid would be helpful,

rather than harmful (which we establish is a possibility), to social welfare, our results can help

policymakers better understand how to approach the security problem in this domain and avoid

policies that might focus in the wrong direction on certain metrics. We also conduct a numerical

analysis that includes additional layers of attacker heterogeneity to demonstrate the robustness of

our findings. Finally, we discuss how our exploration can help inform policymakers working in this

space.

2 Literature Review

This study builds on several streams of research: (i) economic impact of cryptocurrencies, (ii) IT

security, and (iii) economics of ransomware.

A lot of the recent literature on cryptocurrencies focuses on their technical aspects (as a direct

application of blockchains). Only recently are we starting to see an emerging body of work on

the economic impact of this type of digital money while the vast majority of extant work focuses

on financial aspects of cryptocurrencies, as is summarized in recent research literature surveys

by Halaburda et al. (2020), Bariviera and Merediz-Solà (2021), and Yue et al. (2021). While

there is palpable excitement about the potential of cryptocurrencies (and decentralized finance

in general) to bring significant change to the financial sector, there are some problematic effects

of the adoption of cryptocurrencies that warrant closer scrutiny. First, the impact of mining for

cryptocurrencies has been examined from an energy sustainability and environmental perspective

in several studies, with particular focus on the Bitcoin protocol, which relies on a computationally

intensive proof-of-work implementation (Badea and Mungiu-Pupazan 2021). Also, due to various

degrees of pseudonymity, cryptocurrencies became the preferred go-to payment tools for illegal and
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criminal activities (Foley et al. 2019). It is within this latter category that our study makes a

novel contribution, by focusing on the impact of adoption of cryptocurrencies on the cybersecurity

landscape.

As cryptocurrency payments represent the main enabler of ransomware attacks at such unprece-

dented scale, in order to assess the role cryptocurrencies have in shaping software adoption, security

losses and overall social welfare, it is insightful to compare security outcomes across scenarios in

the absence of ransomware threats (pre-crypto) and in the presence of ransomware threats (post-

crypto). The extant literature on the economics of IT security has explored at depth pre-crypto

(traditional) cyberthreat landscapes, tackling a wide spectrum of research questions on topics in-

cluding interdependent network security risks (e.g., Gal-Or and Ghose 2005, August and Tunca

2011, Zhao et al. 2013), patching incentives and management (e.g., Ioannidis et al. 2012, Dey et al.

2015, August et al. 2019), management of vulnerability disclosure (e.g., Cavusoglu et al. 2007,

Choi et al. 2010, Mitra and Ransbotham 2015), open-source software security (e.g., Witten et al.

2001, Swire 2005, Schryen and Rich 2010), cyber insurance (e.g., Böhme and Schwartz 2010).

On the other hand, the literature on economics of IT security in the presence of ransomware

(post-crypto) has just recently gained traction. Ransomware attacks differ from conventional at-

tacks in that, in the wake of the attack, some of the victims may be able to moderate the magnitude

of the loss through the payment of a ransom. Laszka et al. (2017), Cartwright et al. (2019), and

Ryan et al. (2022) explore interactions between ransomware attackers and victims in the context

of bargaining games, a setup fitting the realities of targeted, sparse attacks. Vakilinia et al. (2021)

propose a smart-contract solution to implement a mechanism to ensure attackers share the de-

cryption keys after a ransomware attack. Galinkin (2021) explores options to decrease ransomware

attacker incentives. Fang et al. (2022) study the decision to pay ransom from the perspective

of a Bayesian game with incomplete information for both the hacker and victim. Cartwright and
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Cartwright (2019) and Li and Liao (2020) explore the role of attacker reputation in the context of

multiple-period repeated ransomware attacks. Dey and Lahiri (2021) analyze how banning ransom

payments or executing corporate bailouts would affect welfare in a steady-state multi-period market

with two participants. Balasubramanian (2021) and Yin et al. (2023) explore how cyber insurance

impacts the frequency and severity of ransomware attacks as well as defender efforts. Hernandez-

Castro et al. (2020) study how consumer market and ransomware attack parameters affect welfare

in targeted attacks without interdependent risk. Ahnert et al. (2022) explore the impact of ran-

somware in financial markets. Zhao et al. (2021), August et al. (2022), and Cartwright and

Cartwright (2023) explore ransomware in the context of interdependent security risks in networked

environments.

The aforementioned ransomware studies consider either a single, endogenous attacker or an

exogenously modeled threat. While there exists an established literature within the more general

attacker-defender modeling domain accounting for multiple, endogenous attackers (Hausken and

Bier 2011, Garcia et al. 2019, Xu and Zhuang 2019, DuBois et al. 2023), considerably less explo-

ration has been done on this front in the ransomware threat context (which, as mentioned above,

is different from the conventional threats context). In a related work in the context of economics of

kidnapping, Selten (1988) propose a model of multiple attackers who contemplate perpetrating at

most one attack per period and update their attack pattern over time. In their model, the size of the

attacker population is exogenously determined (all attackers are active). Li and Whinston (2020)

propose a multi-period Bayesian game with multiple attackers who strategically build reputation

over time. In their study, the attackers’ ransom choice is exogenous but the choice of attacking

(entering) at each period is endogenized. We make a significant contribution to this line of work by

constructing a model with multiple heterogeneous ransomware attackers who strategically decide

whether to enter the market, which attack mode to employ, as well as set their ransom demand.
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Raising the complexity but better capturing their interaction, we incorporate indirect network ex-

ternalities between attackers and victims such that users’ patching and ransom-paying decisions

affect attackers’ incentives, and attackers’ entry decisions affect users’ incentives. In addition, we

capture direct crowding-out effect that attackers have on one another.

Importantly, there is a dearth of research directly comparing and contrasting traditional (pre-

crypto) vs ransomware (post-crypto) cybersecurity outcomes. This is where our main contribution

lies. As discussed in the introduction, there is a direct connection between the adoption of cryp-

tocurrencies as payment methods and the proliferation of significant ransomware attacks. Thus,

through a comparison of traditional cybersecurity scenarios and cybersecurity scenarios with ran-

somware, we capture the nuanced impact of cryptocurrencies on cybersecurity. August et al. (2022)

compare and contrast traditional and ransomware risk scenarios in the context of proprietary soft-

ware and strategic software vendors. Their model includes an exogenous ransomware threat and

does not account for the role of the ransom paying population on the attack rate. However, in this

work, we endogenize both consumer and attacker decisions, and consider a multi-attacker setting

with strategic entry driven by expectations of both the size of the unpatched consumer population

and, as a subset of it, the size of the ransom-paying consumer population. Moreover, we extend

that exploration by focusing on a relatively new area in ransomware attacks, namely attacks on

OSS. Ahnert et al. (2022) also compare traditional vs ransomware attacks, but their model con-

siders a single malicious actor attacking multiple homogeneous platforms, each serving multiple

homogeneous clients (with assumed symmetric multi-homing). The security investment decision is

delegated to the platforms. The authors show how ransomware changes the relationship between

client and platform. In contrast, we consider both multiple heterogeneous attackers and multiple

heterogeneous consumers whose strategic decisions are endogenized. This allows us to model ex-

plicitly one of the anecdotal observations in the ransomware landscape, that more unpatched or
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paying consumers encourage more attackers to join the landscape, and the ensuing market effects

associated with such dynamics.

3 Model Description and Consumer Market Equilibrium

In order to highlight the impact cryptocurrencies have on the software security ecosystem, we de-

velop a unifying modeling framework that facilitates a comparative analysis across two scenarios.

The initial specification centers on the state of affairs prior to the cryptocurrency-fueled ransomware

problem of today. We refer to this modeling context as pre-crypto benchmark (BM) setting. The

second specification focuses on the context of the current times and it incorporates the character-

istics of extortion attacks. We refer to this modeling context as post-crypto ransomware setting

(RW ).3 First, we introduce a primary model that captures core interdependencies at play (in Sec-

tion 3), and we explore equilibrium market behavior across these settings, as well as the potential

harm and benefit of ransomware attacks on society. Subsequently, in Appendices C and D, we

examine a generalized model with additional attacker heterogeneity to explore robustness of our

results.

Our study centers on open-source software but the applicability of the model extends to a

broader range of technologies that are offered for zero price and possess similar protective action

opportunities and risk interdependence characteristics. Moreover, through a reframing of the setup,

our model and results can also be used to generate insights in a more general context inclusive of

other types of software.4

3Throughout the exposition, we use these terms interchangeably.
4For example, our model can inform in-use software with sunk prices. Focusing on the population of existing

users, we can explore how, based on residual value of the product, consumers decide whether to abandon the product
or continue to use it and adjust their security strategy based on the perceived threat landscape.
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3.1 Pre-Crypto Benchmark Model (BM )

There is a unit mass continuum of consumers whose valuations of the software lie uniformly in

V = [0, 1].5 Users incur an adoption cost of κ> 0 if they choose to use the software.6 Moreover,

the software is used in a network setting, thus exposing consumers to security risks associated with

its use. A security vulnerability can arise in the software in which case the provider makes a patch

available. Users who do not apply the security patch are at risk. If a user decides to patch the

software, the user will incur an expected cost of patching denoted cp> 0 to immunize against the

attack.7 If the user decides not to patch the software, the probability that the user is randomly hit

by a security attack depends upon the number of attackers who choose to enter the market, which

we discuss next after introducing attacker agents. Ultimately, each user makes a decision to either

adopt, A, or not adopt, NA. Similarly, the patching decision is either patch, P , or not patch, NP .

The consumer action space is then given by Sc
BM

= {(A,P ), (A,NP ), (NA,NP )}.

There is a unit mass continuum of attackers, each characterized by their skill θ distributed

uniformly on Θ = [0, 1]. In particular, an attacker with skill θ will incur a fixed cost of τ(1 − θ),

with τ > 0, to enter the threat landscape, configure attack tools, initiate attack campaigns, risk

being caught, etc. Thus, attackers with greater skill incur lower costs. The parameter τ captures

the state of technology available to facilitate attacks and evade prosecution, and hence the cost

burden for hackers.8 Each attacker decides whether to enter the market, E, or not enter, NE. The

5In general, our analysis applies to all users, individual and business, in that decisions in the model are made
on a per system basis. Business users can be expected to have multiple systems, and can make separate adoption
and patching decisions on each of these systems separately. As long as business users only make decisions for a
countable set of systems, our model can capture such complexities in business where many systems are managed by
a corporate entity. For example, even a year after WannaCry ransomware worm was unleashed, Boeing corporation
still had not patched a small number servers in their Commercial Airplanes division, and these systems ended up
being compromised in March 2018 in a fairly isolated incident (Gates 2018).

6The adoption cost accounts for piloting, configuring and integrating the software with business processes.
7The patching cost accounts for the money and effort that a consumer must exert in order to verify, test, and

roll-out patched versions of existing systems.
8We assume that the variable cost to replicate the attacks on multiple victim systems is negligible compared to

the one-time cost to develop/configure needed malware tools and learn how to utilize them to perpetrate such attacks
(e.g., some malware are designed with worm-like self-replicating capabilities which automate spread).
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attacker action space is then given by Sa
BM

= {E,NE}.

Let γ : Θ → Sa
BM

and σ :V → Sc
BM

denote the strategy functions of the attackers and the

consumers, respectively, based on the heterogeneity of each group. Moreover, Φ =<γ, σ>, denotes

an attacker-consumer strategy profile.9 Next, we lay out how attacker and consumer decisions

are interdependent. For example, attackers’ entry decisions affect consumer losses, and consumer

patching behavior affects attackers’ entry decisions. Under a candidate Φ, the size of the entering

attacker population is given by:

a(Φ)�
∫
Θ
11{γ(θ)=E} dθ . (1)

We denote the probability that a consumer is randomly hit by a security attack by q(a(Φ)),

where a(Φ) is endogenously determined in equilibrium. The function q(·) is assumed to be increasing

and concave, with q(0)= 0, q(1)≤ 1, q′(0)<∞, and the attacker elasticity of risk is decreasing, i.e.,

η′q(a)< 0 where ηq(a) = (dq/q)/(da/a) such that there is a diminishing marginal increase in risk

as more attackers enter, both in absolute and relative terms. If successfully attacked, an adopting

consumer will incur expected security losses that are positively correlated with their valuation

v. That is, consumers with high valuations will suffer higher losses than consumers with lower

valuations due to opportunity costs, higher criticality of data and loss of business.10 Consistent

with related literature, we assume that the correlation is of first order, i.e., the loss that a consumer

with valuation v suffers if hit by an attack is αv where α> 0 is a constant. Therefore, the expected

9We assume imperfect information in both pre-crypto and post-crypto contexts such that agents only know their
own types as well as the overall type distributions. Attackers cannot directly observe valuations, and therefore can
only make strategic decisions based on inferred consumer thresholds in equilibrium.

10For simplicity, we assume that all attacked victims will address the vulnerability to prevent future attacks, such
that the probability of successful repeat attacks on the same system is negligible.
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utility for a consumer with valuation v is given by:

U c
BM

(v,Φ)�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v − κ− cp if σ(v)= (A,P ) ;

v − κ− q(a(Φ))× αv if σ(v)= (A,NP ) ;

0 if σ(v)= (NA,NP ) .

(2)

Just as the entering attackers affect consumer utility as in (2), unpatched users attract attackers.

We similarly denote the size of the unpatched consumer population in the market, contingent on

profile Φ, as

u(Φ)�
∫
V
11{σ(v)= (A,NP )} dv . (3)

For notational simplicity, we omit subscript BM on a(·) and u(·); however, we point out that

quantities a(·) and u(·) will be different under BM and RW models as they are endogenously

determined in equilibrium.

The total expected mass of compromised systems by attackers is Ω(Φ) = q(a(Φ))× u(Φ). Each

compromised system yields value ρ> 0 for the attacker, and each attacker has an equal chance to be

the first to successfully compromise any unpatched consumer. Thus, each attacker expects to gain

ρ × Ω(Φ)/a(Φ) = q(a(Φ))× ρ×u(Φ)
a(Φ) when entering. Thus, for an attacker with type θ, the expected

utility is given by:

Ua
BM

(θ,Φ)�

⎧⎪⎪⎨
⎪⎪⎩

q(a(Φ))× ρ×u(Φ)
a(Φ) − τ(1− θ) if γ(θ)=E ;

0 if γ(θ)=NE .

(4)

Note that in (4) the number of entering attackers a(Φ) impacts attacker utility in two ways,

capturing the strategic interactions among attackers. First, a(Φ) has a direct impact through

q(a(Φ))/a(Φ). This captures the direct crowding-out effect of attackers in that d
da

[
q(a)
a

]
< 0 under
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the assumptions on q(·). Second, a(Φ) has an additional, indirect impact from u(Φ) (via the strate-

gies Φ). This is because u(Φ) is endogenously determined based on consumers maximizing utility

in the face of security risk. Specifically, in the consumer’s utility function in (2), a(Φ) is seen in the

loss term should a consumer elect to adopt but not patch. Therefore, the size of attackers entering

the threat landscape influences the equilibrium mass of unpatched consumers, as seen in (4).

We study a game of incomplete information where consumers and attackers only know the type

distributions of others. In the benchmark game, all decisions are made simultaneously. For all

agents, the equilibrium will satisfy a threshold structure as in the following.

Lemma 1 In the pre-crypto benchmark setting, the equilibrium attacker-consumer strategy profile

Φ∗
BM =<γ∗BM , σ∗

BM> is characterized by thresholds v̄u, v̄p, θ̄∈ [0, 1]. For a consumer of type v ∈V,

the optimal strategy σ∗
BM satisfies

σ∗
BM (v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(A,P ) if v̄p<v≤ 1 ;

(A,NP ) if v̄u<v≤ v̄p ;

(NA,NP ) if 0≤ v≤ v̄u .

(5)

For an attacker with type θ∈Θ, the optimal strategy γ∗BM satisfies

γ∗BM (θ) =

⎧⎪⎪⎨
⎪⎪⎩

E if θ̄ < θ≤ 1 ;

NE if 0≤ θ≤ θ̄ .

(6)

In the market equilibrium, high valuation consumers patch and protect their systems whereas

mid valuation consumers adopt but remained unpatched giving rise to cybersecurity risk. The

equilibrium unpatched population u(Φ∗
BM ) = v̄p − v̄u provides an incentive for attackers to enter

the market and strike unpatched systems as seen in the utility function expressed in (4). As a

result, attackers can attain positive utility from entering provided that their costs are covered, i.e.,
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the attacker skill is greater than θ̄. This gives rise to an equilibrium attacker population of size

a(Φ∗
BM ) = 1− θ̄.

3.2 Post-Crypto Ransomware Model (RW )

In the post-crypto context, in the presence of ransomware, the threat landscape changes. An

attacker may still elect not to enter (NE). However, if they decide to enter, they choose the

attack mode - standard attack similar to the pre-crypto benchmark setting (E) or ransomware

attack (ER). In the case of the latter, the attacker also selects a ransom amount, thus making two

decisions. The attacker action space in this setting becomes Sa
RW

= {{ER}× [0,∞)}∪{E}∪{NE}.

Consistent with the pre-crypto benchmark setting, we assume an attacker entering with a

standard attack (E) and skill θ will incur a fixed cost of τ(1 − θ), with τ > 0, to enter the threat

landscape, configure attack tools, and initiate the attack campaign. In the case of entry with

ransomware (ER), there may be additional costs such that an attacker with skill θ incurs a fixed

cost of τ(1 + ω)(1− θ) where ω> 0.11 Hence, the additional cost of τ(1− θ)ω represents the skill-

based, ransomware-specific cost differential. In this case, if a victim chooses not to pay ransom,

they are monetized in a similar way as in a standard attack. We let ρ̃ > 0 denote the return to an

attacker under the ransomware scenario when either (i) the attacker enters with a standard attack

or (ii) the attacker enters with ransomware, but the victim elects not to pay. Here, we permit ρ̃

under ransomware to differ from ρ under the benchmark because the existence of ransomware as

well as differences in the post-crypto landscape can alter the cybercrime economy in ways that give

rise to distinct returns under the two scenarios.

On the consumer side, unpatched consumers that are successfully attacked face a post-attack

choice between paying the ransom to mitigate the loss or not paying the ransom and incurring the

11There are additional costs associated with setting up and configuring systems to support the interactions of the
ransom process, including the handling of crypto transactions, the encryption of data, and the generation and passing
of decryptor tools, in addition to costs to reduce the risk of being caught.
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full loss. Following August et al. (2022), we assume that a victim that agrees to pay ransom will

incur an additional residual loss δαv with δ ∈ [0, 1) from the attack.12 Suppose an attacker with

skill θ sets a ransom amount of R. Thus, if unpatched and hit by this attacker, a consumer of type

v incurs a loss of R + δαv if they pay the ransom. However, they incur a loss of αv if they decide

not to pay the ransom. Thus, the consumer pays ransom if and only if R ≤ αv(1− δ). In that this

depends on v, we define Rmax(v) = αv(1− δ) as the maximum ransom amount that a consumer of

type v would be willing to pay if hit with ransomware. If they are hit by an attacker of type θ such

that R>Rmax(v), then they would not pay that ransom. If they are hit by an attacker of type θ

such that R ≤ Rmax(v), then they would pay the ransom. We define a ransom mapping R(θ) = R

for all θ∈Θ to represent a candidate set of ransoms.

Let γ̃ : Θ → Sa
RW

and σ̃ : V → Sc
RW

denote the strategy functions of the attackers and the

consumers, respectively, based on the heterogeneity in each group. For the given attacker-consumer

profile Φ̃ =<γ̃, σ̃>, the expected utility for a consumer with valuation v is given by:

U c
RW

(v, Φ̃)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v − κ− cp if σ̃(v)= (A,P ) ;

v − κ− q(a(Φ̃))× L(v) if σ̃(v)= (A, NP ) ;

0 if σ̃(v)= (NA, NP ) ,

(7)

where the attacker population is given by a(Φ̃)�
∫
Θ 11{γ̃(θ) �=NE} dθ and the conditional expected

loss if hit is L(v) � L1(v) + L2(v). Here, L1(v) represents the conditional expected loss in the

event the victim ends up paying ransom and is given by L1(v) =
∫
Θ

[
11{γ̃(θ)=ER∩R(θ)≤Rmax(v)} ×

(R(θ) + δαv)

]
× 1

a(Φ̃)
dθ. This loss is induced by attackers who enter with ransomware attacks and

choose ransoms below the consumer of type v’s maximum willingness to pay ransom. On the other

hand, L2(v) represents the conditional expected loss in the event the victim is hit with a ransom

12Research indicates that total ransom attack losses can be as high as seven times the ransom demand (Blosil
2022). A study by IBM Security (2022) reports victims incurring average ransomware costs of �4.54 million in excess
of the ransom demand. Residual losses can be due to investigation and remediation, lawsuits, reputation impact, etc.
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amount higher than their maximum willingness to pay or is hit with a standard attack and can be

expressed as L2(v) =
∫
Θ

[
11{(γ̃(θ)=ER∩R(θ)>Rmax(v))∪ γ̃(θ)=E} × αv

]
× 1

a(Φ̃)
dθ.

Ransomware attacks and conventional attacks often exploit a vulnerability to gain access to

a system and activate a backdoor. For example, a recent report by IBM (2023) identifies the

deployment of backdoors as the most common approach across all types of cyberattacks in 2022.

Consistent with these observations and to maintain parity across contexts, as in the BM scenario,

we assume q(a(Φ̃)) is the probability that a consumer is randomly hit by a security attack. Above,

1/a(Φ̃) is the conditional density of it originating from each type of entering attacker. As seen in

(7), a user that adopts but does not patch (σ̃(v)= (A,NP )) incurs an expected security loss that

accounts for the likelihood it falls victim to any of the attackers that enter the landscape (either

paying ransom or incurring standard losses).

Again, u(Φ̃)�
∫
V 11{σ̃(v)= (A,NP )} dv denotes the size of the unpatched adopter population. Sim-

ilar to model BM , here we also omit subscript RW for quantities u(·) and a(·) for ease of exposition.

However, we remind the reader that these quantities are endogenously determined in equilibrium

and hence, potentially different under the two models. Given strategy profile Φ̃, if an attacker sets

a ransom amount of R, then the size of the unpatched adopter population that is willing to pay

this ransom is given by:

r(R, Φ̃)�
∫
V
11{σ̃(v)= (A,NP )∩Rmax(v)≥R} dv . (8)

For any of the unpatched systems, each attacker that enters the landscape has the same chance

to be the one successfully compromising that system, at the rate q(a)
a . Hence, an attacker with type
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θ receives expected net utility:

Ua
RW

(θ, Φ̃)�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(a(Φ̃))×[ρ̃×(u(Φ̃)−r(R,Φ̃))+R×r(R,Φ̃)]
a(Φ̃)

− τ(1− θ)(1 + ω) if γ̃(θ)= (ER,R) ;

q(a(Φ̃))× ρ̃×u(Φ̃)

a(Φ̃)
− τ(1− θ) if γ̃(θ)=E ;

0 if γ̃(θ)=NE .

(9)

Notably, (9) is consistent with (4) when an attacker enters with standard attacks. However, for

an attacker with type θ entering with ransomware and choosing ransom amount R, their payoff

can come from two streams: (i) unpatched consumers who are willing to pay R (i.e., a group of

size r(R, Φ̃)) and (ii) unpatched consumers who are not willing to pay R and get monetized in the

standard way (i.e., the remainder of the unpatched population u(Φ̃)− r(R, Φ̃)).

In equilibrium, when attackers choose to enter with ransomware, they have the flexibility to

set a type-dependent ransom amount. However, attacker heterogeneity appears only at the entry

cost level and does not impact the chance of a successful attack. Then conditional on entry with

ransomware, all attackers face the same objective function when determining their optimal ransom.

Consequently, in equilibrium, ransomware attackers will optimally set their ransom demand to a

common endogenously determined amount R(θ) = R∗, which is to say that their optimal ransoms

do not depend on their type. In Appendices C and D, we present a generalized model with attacker

heterogeneity impacting both revenues and costs which, in turn, leads to type-dependent ransom

demands, and we illustrate the robustness of our results under this more general setting. To

streamline the exposition, we utilize the simplified model here in the main body of the paper.

Similar to the pre-crypto benchmark setting, under post-crypto ransomware setting, the market

equilibrium has a threshold structure as follows:

Lemma 2 In the post-crypto ransomware setting, the equilibrium attacker-consumer strategy pro-

file Φ̃∗
RW =<γ̃∗RW , σ̃∗

RW> is characterized by thresholds ṽu, ṽp, θ̃, θ̂∈ [0, 1] and ransom demand R∗.
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For a consumer of type v ∈V, the optimal strategy σ̃∗
RW satisfies

σ̃∗
RW (v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(A,P ) if ṽp<v≤ 1 ;

(A,NP ) if ṽu<v≤ ṽp ;

(NA,NP ) if 0≤ v≤ ṽu .

(10)

For an attacker with type θ∈Θ, the optimal strategy γ̃∗ satisfies

γ̃∗RW (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ER,R∗) if θ̃ < θ≤ 1 ;

E if θ̂≤ θ≤ θ̃ ;

NE if 0≤ θ < θ̂ .

(11)

High valuation consumers continue to patch and protect their systems. On the other hand, mid

to high valuation consumers adopt and remain unpatched, but elect to pay ransoms if ever hit.

Low to mid valuation consumers also adopt and remain unpatched but instead elect not to pay

ransoms when compromised. Finally, low valuation consumers choose not to adopt. In this case,

the equilibrium unpatched population u(Φ̃∗
RW ) = ṽp − ṽu (of which a subset will pay ransom, as

described in (8), and a subset will not and incur standard losses instead) provides an incentive for

attackers to enter the market and strike unpatched systems as seen in the utility function expressed

in (9). Similar to the pre-crypto benchmark setting, attackers with types higher than θ̂ enter. This

gives rise to the attack likelihood q(a(Φ̃∗
RW )) where a(Φ̃∗

RW ) = 1− θ̂, as seen in the consumer utility

function expressed in (7).

3.3 Focal Region

In the following, we will narrow our attention to a subset of the parameter space, calling this our

focal region. While in the entirety of the parameter space, we can enumerate and characterize all
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of the different market structures that obtain in equilibrium, we focus on the more salient ones

that are typically observed in these practical software contexts. In particular, our focal region

consists of the parameter conditions under which, in both pre-crypto benchmark (BM) and post-

crypto ransomware (RW ) settings, we have all consumer segments present with positive mass in

equilibrium. Also, some attackers will choose to enter while some will stay out of the market.

Under BM, we have some consumers who opt out of the software, some who use the software but

do not patch, and some who use the software and patch. Moreover, under RW, consumers that use

the software but stay unpatched are split into those who pay ransom and those who do not.

The focal parameter region resembles market realities in that all consumers segments are in

play. More specifically, we observe in practice the existence of both patched and unpatched user

segments, with a portion of the latter segment paying ransom. In 2022, the majority of ransomware

attacks exploited old, known bugs (Vijayan 2023). In fact, 76% of those flaws were from 2019 or

before - thus, over three years old at that time. All users had an option to protect but some chose

not to do so. Consumers with greater valuation at risk prioritize patching soon after patch release,

often using patch management solutions (Kaseya 2020, Polaris Market Research 2024).

In terms of the magnitude of the impact of the cyberincidents on business consumers, as of

2024, according to analysis by Sophos, ransomware attacks exploiting unpatched vulnerabilities have

the greatest business impact (Adam 2024). In particular, attacks that started with an exploited

vulnerability succeeded in 75% of the instances in compromising backups and in 67% of the cases

were followed by data encryption. With backups compromised and data encrypted, no less than

71% of these organizations chose to pay the ransom when the attack vector was an unpatched

vulnerability (Adam 2024). Thus, in reality, the ransom paying population represents a sizeable

segment of the unpatched population.

The parameter conditions that give rise to equilibria matching these outcomes are: a low soft-
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ware adoption cost (κ< κ̄), a low residual loss to consumers who pay ransom (δ < δ̄), an intermediate

security loss factor (α<α< ᾱ), an intermediate attacker entry cost parameter (τ < τ < τ̄), an in-

termediate additional attacker entry cost associated with ransomware (ω<ω< ω̄), and a sufficient

attacker value from executing standard attacks in both benchmark (ρ>ρ) and ransomware (ρ̃ > ρ̃)

scenarios. The essence of the conditions is that parameter values need to be within a reasonable

range such that consumer segments do not disappear and there is partial entry of attackers into the

market. It is important to note that our focal region only serves to simplify the paper while still

establishing the main insights; our insights can be shown to hold over broader regions and other

market structures. We demonstrate the existence and characterization of the bounds denoted above

in Appendix A.

4 Equilibrium Behavior Comparative Analysis

Users who choose to remain unpatched in equilibrium attract attackers and thereby contribute to

losses across the market due to this security externality. Hence, consumers’ patching behavior is

influenced by attacker entry behavior and vice versa. Before diving into the comparative analysis

of the benchmark and ransomware scenarios, it is important to note that lower adoption costs tend

to exacerbate the security landscape.

Remark 1 Under both pre-crypto benchmark and post-crypto ransomware settings, a decrease in

consumer adoption cost (κ) leads to more attackers entering in equilibrium, and hence higher secu-

rity risk.

Taking κ smaller reflects the lower adoption costs associated with OSS, and Remark 1 em-

phasizes that higher security risk will result for such applications. Because lower adoption costs

incentivize more consumers to use the software and some elect to do so in a risky, unpatched man-
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ner, a greater number of attackers find it beneficial to enter the market and cause this risk. In

contrast, with proprietary software, the price serves dual purposes. Not only does it drive rev-

enue for the vendor but, importantly, the price helps to shrink the user population (by increasing

adoption costs) which provides less incentive for attackers to enter and reduces risk in turn.

Therefore, in the OSS world, it is important to understand how patching and attacking behaviors

vary across the pre-crypto benchmark and post-crypto ransomware settings to understand how to

better manage this critical driver of risk. In the following, we discuss how attacker entry and the

equilibrium level of risk are impacted by cost changes associated with attacker technology.

Proposition 1 An increase in attacker entry costs affects the size of the equilibrium attacker

population differently under pre-crypto benchmark and post-crypto ransomware settings:

(i) In the pre-crypto benchmark setting, an increase in attacker entry costs always leads to fewer

attackers in equilibrium and hence reduced security risk.

(ii) In the post-crypto ransomware setting, an increase in attacker entry costs can lead to either

fewer or more attackers in equilibrium. Specifically, the size of the equilibrium attacker popu-

lation and corresponding security risk increase when τ is intermediate and decrease (consistent

with the pre-crypto benchmark setting) when τ is either small or large.

In this proposition, we study how the equilibrium and related metrics vary due to changes in

attacker entry costs (τ). First, it is not simple to directly argue that there are less attackers when

entry costs rise because any pressure that reduces attacker entry also reduces the risk faced by

consumers, which, in turn, increases their incentive to use the software product in an unpatched

manner, which indirectly increases the incentive for attackers to enter again. We begin by discussing

the pre-crypto benchmark setting using a contradiction argument. Suppose that the attacker

population a increases in the entry costs for some interval of τ . The probability a consumer
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is randomly hit, q(a), increases in a; therefore, consumers bear more risk if choosing to be an

unpatched user. By (2), the marginal consumer who is indifferent between being unpatched and

not using will no longer use. Similarly, the marginal consumer who is indifferent between patching

and being unpatched will shift toward patching. Altogether, u shrinks as a result. Examining the

attacker utility in (4), both q(a)/a and u are decreasing in a. Thus, the attacker’s revenue decreases

in tandem with an increase in entry cost, which would effectively reduce the attacker population

in equilibrium, contradicting the supposition that a can be increasing in τ .

However, in the post-crypto ransomware setting, the decision problem is more complex for

both consumers and attackers, which can lead to a different relationship between the equilibrium

number of attackers and changes to the entry cost. First, note that an attacker always prefers to

set a ransom that satisfies R≥ ρ̃ if it enters as a ransomware attacker because it can alternatively

enter as a standard attacker and generate ρ̃ per victim. From a consumer standpoint, by (7) and

because Rmax(v) = αv(1− δ), it is necessary that αv(1− δ)> ρ̃ for some consumers who choose to

remain unpatched in equilibrium, otherwise an attacker will prefer standard attacks.

We begin with τ near the lower end of the focal region. In this region, as τ declines, there is

an incentive for a lot of attackers to enter at low cost which, in turn, is associated with a higher

q and hence higher risk that all consumers face. As a result, consumers with higher valuations

will have a greater incentive to patch and protect their systems which is to say that the threshold

valuation consumer who is indifferent between patching and not patching will have a tendency to

decline. This behavior puts a downward pressure on the ransom price in that the attackers need

consumers to be unpatched in equilibrium for attackers to thrive. In order to counter the decline of

the aforementioned threshold valuation, attackers will reduce ransom price; however attackers are

willing do so to the extent that their ransom prices remain above ρ̃, as this is the outside option.

Therefore, as τ gets small, at some point attackers run out of room to lower price and can no
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longer provide sufficient incentives for consumers to pay ransom. Because attackers vary in their

additional cost of entry particular to ransomware, as τ gets small, more and more attackers switch

from entering with ransomware to entering as standard attackers, and the landscape converges to

the benchmark case.

When τ is in the middle range, the dynamics in play are significantly different because of

attacker strategic behavior as they sharply modify ransom prices and switch from standard attack

to ransomware attack strategies. In panel (e) of Figure 2, we depict how the ransom price increases

as the cost of entry increases through the focal region. Notably, in the middle of the range,

attackers choose in equilibrium to increase ransom prices nonlinearly. This occurs because τ reaches

a level where a sufficient amount of attackers have exited the market due to the same driving

effects discussed in the lower τ region. This smaller attacker population induces an increase in the

unpatched population at the higher portion of the valuation space as consumers strategically switch

from being patched to being unpatched. This, in turn, permits higher ransom levels to be charged

due to the higher valuations being present in the unpatched population. As τ increases, attackers

simultaneously accelerate both the increase in ransom price and their transition away from standard

attacks toward ransomware attacks as they benefit from these higher prices. This can be seen in

panels (e) and (b), respectively, of Figure 2. This shift in attacker strategy toward ransomware

attacks affects the composition of consumers’ losses, with a significantly higher probability of being

hit by ransomware attacks than standard attacks. However, losses in ransomware attacks are

partially mitigated in that consumers can pay the ransom price whereas with standard attacks,

victims can incur substantial losses as they are valuation dependent (see the bracketed expression

in (7)); in fact, consumers can be better off with a greater proportion of ransomware attacks even if

the ransom prices are somewhat higher. As such, unpatched usage also increases at an accelerated

rate in τ as can be seen in panel (a) of Figure 2. This drastic increase in u encourages more
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Figure 2: The impact of the attacker entry cost factor (τ) on equilibrium market outcomes under
pre-crypto benchmark and post-crypto ransomware settings. The parameter values are: cp = 0.3,
δ = 0.02, κ = 0.05, α = 2.8, ρ = 1.6, ρ̃ = 1.3, ω = 0.1, and q(a) = 0.9a− 0.4a2.

attackers to enter the market as standard attackers as it dominates the negative impact of higher

entry cost (τ) and crowding out effects on revenue (decreasing q(a)/a in a). This increase in the
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attacker population can be seen in panel (d) of Figure 2.

As τ further increases, a point is reached where standard attacks are no longer sustained in

equilibrium (e.g., this behavior can be seen around τ =4.2 in panel (b) of Figure 2 for this specific

numerical illustration). Because attackers are no longer switching from standard attacks to ran-

somware attacks at this higher range of τ , the effect discussed above where the attacker population

ultimately increases as a result is no longer present. This is because the unpatched population

cannot be rapidly increased (as τ increases) without attackers significantly transitioning from en-

tering with standard attacks to entering with ransomware. Solely manipulating the ransom price

is insufficient to generate this effect. Instead, the attacker population will decrease in τ throughout

this region which, in turn, leads to a relatively flatter increase (in comparison to the intermediate

τ region) in the unpatched consumer population, which can be seen in panels (d) and (a), respec-

tively, of Figure 2. Moreover, under higher τ , the attacker population decreases at a slower rate

than seen in the benchmark case because attackers can leverage an ability to charge ransoms to

higher valuation consumer types to preserve revenue.

Proposition 2 Under the post-crypto ransomware setting, there exists τ̂ > 0 such that, under the

focal region, when τ > τ̂ , the ransom-paying population size, equilibrium ransom charged, and ex-

pected total ransom paid all strictly increase in τ , despite the attacker population size decreasing in

τ .

The consumer market equilibrium structure is characterized by threshold values ṽu and ṽp

marking the indifference threshold between being an unpatched user and being a non-user, and

between being a patched and an unpatched user, respectively. Moreover, these thresholds satisfy

ṽu<
R∗

α(1−δ) < ṽp. Thus, we can define ṽr =
R∗

α(1−δ) as the threshold, unpatched consumer indifferent

between paying ransom and incurring losses. Therefore, the mass of consumers who are unpatched

and prefer to pay ransom in equilibrium is r(·)= ṽp − ṽr. Also, when τ > τ̂ (in the numerical
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illustration in Figure 2, τ̂ ≈ 4.2), the attacker market equilibrium structure is characterized by a

single threshold θ̃ marking the attacker type who is indifferent between entering with ransomware

and not entering the market.13 Therefore, the mass of attackers entering in equilibrium is given by

a∗=1 − θ̃(τ). For a given τ , the expected total ransom paid can then be computed as T = q(1 −

θ̃(·))×R∗(·)× r(·).

Taking these three components one at a time, we begin with q(·). As τ reaches a higher level,

by part (ii) of Proposition 1, the equilibrium number of attackers decreases in τ . As such, q(a∗)

decreases. For the second component, the equilibrium ransom R∗(·), with fewer attackers, there is

an opportunity for more consumers to be remain unpatched. This, in turn, provides attackers with

an ability to charge higher ransoms in that there are more higher valuation consumers remaining

unpatched which can be monetized. As a result, attackers will set an optimal ransom that is

gradually increasing in τ . Moving to the last component, r(·), a higher ransom can make some

consumers less willing to pay this ransom, and this intuition is true for consumers near the ṽr

threshold who will switch to not paying ransom. However, it turns out that consumers near the

ṽp threshold have an incentive to switch toward paying ransom instead of patching due to the

reduction in the number of attackers and reduced risk, despite the higher ransom. Examining the

thresholds ṽr and ṽp in panel (a) of Figure 2, notably ṽp increases more sharply than ṽr. Therefore,

overall, the ransom paying population size r is increasing in τ throughout this region. Turning

our attention to the expected total ransom paid, as τ increases, q(·) decreases while R∗(·) and r(·)

increase. The multiplicative effect of these latter two components dominate the decrease in risk,

and hence the expected total ransom paid ultimately increases in τ . We illustrate this net effect in

panel (f) of Figure 2.

Interestingly, this region is characterized by a higher ransom, a larger unpatched population (as

13This is because θ̂= θ̃ in equation (11) of Lemma 2 in this particular region.
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well as a larger ransom-paying subset), and a higher expected total ransom being paid as τ grows.

Nevertheless, the attacker population still decreases in aggregate. It is important to further explore

why this is the case and examine how attackers are differentially impacted by this shift in entry

costs, which we study in the following proposition.

Proposition 3 When the attacker entry cost parameter τ is at the higher end of the focal region,

under both pre-crypto benchmark and post-crypto ransomware settings, an increase in attacker entry

costs benefits some entering attackers while hurting others. Specifically, among attackers who enter

in equilibrium, higher skilled attacker utilities increase in τ , whereas lower skilled attacker utilities

decrease in τ .

Technically, under the post-crypto ransomware setting, given τ ∈ (τ̂ , τ̄), there exists θ′ ∈ (θ̂(τ), 1)

such that
dUa

RW
(θ,Φ̃∗)

dτ < 0 for all θ∈ (θ̂(τ), θ′) while
dUa

RW
(θ,Φ̃∗)

dτ > 0 for all θ∈ (θ′, 1], where θ̂(τ) rep-

resents the type of the marginal attacker in the market as defined in Lemma 2. The statement

under the pre-crypto benchmark setting is similar.

For the post-crypto ransomware setting, as we already established above, in this region we have

increasing equilibrium ransoms, increasing unpatched segment and as a subset, increasing ransom

paying population, together with an increasing expected total ransom paid in association with an

increase in attacker entry costs. As all these metrics increase, it follows from (9) that attacker

revenue (the first part of the utility equation) is also increasing in τ for all remaining attackers in

the market. Moreover, as previously discussed, attacker revenue is homogeneous across attackers

(with heterogeneity manifested only at the entry cost level). Attackers with highest skills (θ close

to 1) will incur small entry costs which are offset entirely by the increase in revenue, resulting in

such attackers being better off as attacker entry costs increase and additional less-skilled attackers

drop of the market, lowering competition. On the other hand, for attackers still in the market but

with lower skills, the increase in entry costs takes a bigger toll on the overall utility, erasing the
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increase in revenue. This results in less-skilled attackers that are still in the market being negatively

impacted by an increase in entry costs (with some attackers gradually peeling off). To sum up,

while the overall attacker population declines in the attacker entry costs in this region, the impact

is in fact positive for some attackers and negative for others.

For the pre-crypto benchmark setting, the argument is similar but simpler in that the revenue

portion of the attacker utility function in (4) is more straightforward. Specifically, by part (i) of

Proposition 1, a decreases in τ , thus q(a)/a increases in τ . Moreover, the unpatched population

increases due to the reduced risk from attackers. Thus, the revenue portion of the utility function

increases in τ for all attackers who remain in the market. Similar to the ransomware scenario,

the heterogeneity in entry cost leads to the higher skilled attacker ultimately benefitting from the

higher τ and the lower skilled attackers being worse off.

5 Welfare Comparative Analysis

In this section, we conduct welfare sensitivity analysis and welfare comparisons across scenarios

with respect to pertinent model parameters. Since cybercriminals engage in actions prohibited by

criminal legislation and, moreover, they often operate outside the sovereign jurisdiction covering

their victims, we exclude their criminal gains in our welfare analysis consistent with extant literature

(see Lewin and Trumbull 1990 for an elaborate discussion on this topic). Therefore, welfare analysis

in this context centers on consumer surplus. We use WBM and WRW to denote the equilibrium

welfare metric under pre-crypto benchmark and post-crypto ransomware settings.

5.1 Impact of Market Primitives of Attackers (τ and ρ̃)

In this subsection, we discuss how attacker entry costs and gains from traditional attacks impact

welfare.
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Proposition 4 In the focal region, the sensitivity of welfare to attacker entry costs is structurally

different under pre-crypto benchmark and post-crypto ransomware settings. Under the pre-crypto

benchmark setting, welfare always increases as attacker entry costs rise. However, under the post-

crypto ransomware setting, welfare actually decreases in attacker entry costs when the latter are

within an intermediate range. Outside of that range, the behavior is similar to that under the

pre-crypto benchmark setting.

The essence of Proposition 4 is illustrated in Figure 3. At first thought, one might expect social

welfare to (weakly) increase in τ as increased efforts lead to less attackers, and, hence, lowered

risk of a breach. Our result confirms this expectation in the benchmark scenario. However, as

it turns out, in the post-crypto scenario, social welfare can actually decrease in τ . By part (ii)

of Proposition 1, the size of the equilibrium attacker population and corresponding security risk

increase when τ is intermediate. As discussed in Section 4 and illustrated in Figure 2, the effects

are complex as this increase in attacker population occurs in tandem with the unpatched consumer

population also unexpectedly increasing more steeply in τ in this subregion. This can be seen in

panel (a) of Figure 2. This behavior, in turn, leads to a steeply increasing ransom being charged

by attackers to opportunistically leverage the higher valuation consumers who are electing to go

unpatched which can be seen in panel (e) of Figure 2.

Unpacking the aggregate equilibrium movement in these metrics, the impact of a shift in τ on

individual consumer decisions varies considerably depending on the type of consumer and their

strategic security choices. For example, if a consumer has a high valuation and finds it optimal to

patch in equilibrium, then an increase in τ has no effect on the surplus of the consumer provided

that they continue to patch. If a consumer prefers to patch but switches to being unpatched and

paying ransom due to an increase in τ , then their surplus improves, by revealed preference, at

the point where they switch. Next, for a consumer who does not change their strategy and still
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Figure 3: The impact of the attacker entry cost factor (τ) on social welfare outcomes under pre-
crypto benchmark and post-crypto ransomware settings. The parameter values are: cp = 0.3,
δ = 0.02, κ = 0.05, α = 2.8, ρ = 1.6, ρ̃ = 1.3, ω = 0.1, and q(a) = 0.9a− 0.4a2.

prefers to be unpatched and pay ransom as τ increases, the analysis is more complex. Consumers’

surpluses can either increase or decrease in τ depending on their type and the rate at which attackers

transition from standard attack to ransomware attack strategies. Next, for a consumer who pays

ransom and then switches to not paying due to an increase in τ and the associated increase in

ransom, their surplus decreases in that the size of the attacker population increases in τ . The same

situation unfolds for consumers who already preferred to be unpatched and not pay ransom even

under the lower τ . Finally, some unpatched consumers who were not paying ransom are forced

out of the market due to the increased risk which negatively affects consumer surplus. Taking

all of these disparate impacts into account, Proposition 4 formally establishes that the overall

welfare ultimately declines as the attacker entry costs increase in this subregion, largely due to the

stark increase in risk facing lower valuation consumers who remain in the market and the loss of
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consumers from the market.

Outside of the intermediate range of τ , the behavior in the post-crypto ransomware setting is

similar in nature to that under the pre-crypto benchmark setting. As can be seen in panel (d) of

Figure 2, the decrease in the attacker population in equilibrium is much steeper in the lower and

upper τ regions in comparison to the intermediate τ region. As a result, the effect that stems from

a decrease in security risk associated with the declining attacker population dominates the overall

effect on welfare. Therefore, welfare increases in τ in the outer regions, consistent with Proposition

4 and Figure 3.

Next, we continue our exploration of the potential benefits of ransomware attacks on society

by directly comparing welfare outcomes in the post-crypto ransomware setting to the pre-crypto

benchmark setting. An important question is whether the addition of ransomware to the threat

landscape, despite giving strategic attackers multiple ways to monetize victims, can benefit society.

In the following proposition, we formally examine this question as moderated by the returns to

post-crypto standard attacks and varying levels of attacker entry costs.

Proposition 5 The societal impact of the presence of ransomware hinges on the returns to standard

attacks under the post-crypto ransomware setting (ρ̃), the level of attacker entry costs (τ), and

ransomware-specific cost differential (ω). Specifically, when ω is not too high:

(i) When ρ̃ is low, WRW >WBM holds under both low and high τ ;

(ii) When ρ̃ is moderate, WRW >WBM continues to hold under low τ . However, WRW and WBM

eventually cross, with WBM >WRW obtaining under high τ ;

(iii) When ρ̃ is high, WBM >WRW holds under both low and high τ .

First, we examine the most complex case which is part (ii) of Proposition 5. In this sub-case,

ω is low such that, post-crypto, attackers can enter with ransomware or standard attacks with a
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fairly similar cost structure. Moreover, the returns to standard attacks in the post-crypto setting,

ρ̃, are at an intermediate range such that the benefits to attackers under the two settings (pre- and

post-crypto) are more comparable. As attacker entry costs decrease toward the lower end of the

focal region, the equilibrium outcome under the post-crypto ransomware setting is converging to

only having standard attacks. This is because the risk is too high due to the size of the attacker

population that enters, which drives higher valuation consumers to patch and leaves little ability

for attackers to charge ransoms high enough to justify entering with ransomware. As τ increases

from this boundary into an intermediate range, high skill attackers now find it optimal to enter with

ransomware with a ransom in excess of ρ̃ such that some consumers prefer to reduce costs by paying

ransom instead of patching. In that the highest skilled attackers have minimally greater costs from

entering with ransomware in comparison to entering with standard attacks, these attackers begin

to enter with ransomware instead. As patched consumers shift over to being unpatched and pay

ransoms, the unpatched population size increases relatively faster in the post-crypto ransomware

setting compared to the benchmark. As a result, the attacker population also increases relatively

faster due to the greater incentive. This leads to decreasing consumers under RW setting due

to consumers with lower valuations exiting at the bottom of the market due to the increased risk

associated with a greater attacker population. However, this negative impact on surplus is less than

the positive impact associated with higher valuation consumers reducing costs by paying ransom

instead of patching. Therefore, in aggregate, welfare is higher under RW than under BM when τ

is low.

As the attacker entry cost moves to a high level, the equilibrium outcomes in the post-crypto

ransomware and pre-crypto benchmark settings diverge. As discussed earlier, as τ gets high, at-

tackers shift greatly toward ransomware strategies and away from standard attacks. As a result, the

attacker population can be considerably larger under post-crypto ransomware setting than under
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benchmark. Comparatively, substantially fewer consumers will elect to use the software under RW

setting than under BM setting due to the greater risk associated with this attacker population.

Notably, the consumers who remain unpatched and do not pay ransom are also exposed to much

greater risk, thereby incurring larger losses that negatively impact surplus. Altogether, under high

attacker entry costs, welfare under post-crypto ransomware setting is much lower than under the

benchmark setting due to these effects. In Figure B.1 in Appendix B, we numerically illustrate the

cutoff value for τ that dictates whether welfare is higher under the post-crypto setting. We explore

how the cutoff is impacted by patching cost, security losses, and the attacker gains pre-crypto.

Turning part (iii) of Proposition 5, as ρ̃ becomes larger, it further encourages the entry of

attackers under the post-crypto ransomware setting due to higher returns even with standard

attacks. This significantly shifts the trade-offs discussed above in the direction of the latter effects

described where welfare is worse off under RW setting, ultimately dominating for both low and

high τ . For part (i) of Proposition 5, the effects shift in the opposing direction in that a low level of

ρ̃ will ultimately shift more attackers toward entering with ransomware instead of standard attacks

under the post-crypto setting. Moreover, post-crypto, attackers have a more difficult time justifying

entering with a standard attack under the lower ρ̃. Therefore, some of these attackers with lower

types will prefer to no longer enter the market. As a result, post-crypto, welfare can benefit both

from fewer attackers in the market and from consumers who have more options to mitigate loss by

paying ransom due to attackers who shifted attack modes.

A similar finding has been established in the context of an exogenous ransomware threat in

August et al. (2022). Proposition 5 confirms the nuanced nature of this debate in the context

of endogenous attackers. Depending on the attacker primitives of the security landscape, the post-

crypto ransomware setting may be more socially desirable than the pre-crypto benchmark setting

from a security standpoint even in the presence of strategic attackers who are endogenously moti-
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vated by ransoms being paid and can choose an attack mode that maximizes their own gains.

5.2 Impact of Market Primitives for Consumers (α and δ)

Next, we discuss the impact of the security loss factor versus the residual loss factor on welfare.

Notably, security losses as dictated by parameter α exist under both pre-crypto benchmark and

post-crypto ransomware settings. However, the residual loss parameter δ is only relevant under

RW since it accounts for the additional losses sustained by consumers even though they paid the

ransom that was demanded.

Proposition 6 In the focal region, when τ is not too low, welfare decreases in α under both pre-

crypto benchmark and post-crypto ransomware settings. However, welfare increases in δ under the

post-crypto ransomware setting.

The benchmark scenario can be reasoned as follows. As α increases, there is a pressure on consumers

at both ends of the market. Lower valuation consumers exit due to the increased risk, and higher

valuation consumers shift toward patching. These two effects make the market less attractive to

attackers, thus the attacker population also decreases. This slightly reduces risk for consumers, but

the small decrease in attackers does not compensate for the overall higher losses associated with α.

The net effect is a decrease in welfare.

The post-crypto scenario is more complex. In the higher range of α, attackers enter predom-

inantly with ransomware attacks. In that range, the losses are so high that consumer demand

shrinks, with exits at the bottom of the unpatched population (among consumers who were not

willing to pay ransom). However, the difference between standard and residual losses ((1 − δ)αv)

also increases for remaining unpatched consumers, with increased pressure to patch for those with

higher valuations. At the same time, attackers take advantage of an opportunity to increase ran-

som (given that paying ransom can mitigate a higher loss). Altogether, the compounded effect of
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Figure 4: The impact of the security loss factor (α) on equilibrium outcomes under pre-crypto
benchmark and post-crypto ransomware settings. The parameter values are: cp = 0.3, δ = 0.02,
κ = 0.05, τ = 4, ρ = 1.6, ρ̃ = 1.3, ω = 0.1, and q(a) = 0.9a− 0.4a2.

higher losses and higher ransoms drives an increase in patching, depressing the unpatched segment.

As a result, there is a decrease in the attacker population; similar to the benchmark setting, that

effect is not sufficient to counter the increase in losses on the consumer side, leading to an overall

decrease in welfare under post-crypto ransomware setting too. For low α we see similar outcomes

- post-crypto, in that range, most attackers enter with standard attacks. As such, the increase in

security losses has a strong impact on consumer welfare as there is a very limited chance to be

attacked by ransomware and be able to mitigate such losses.

However, for α in the intermediate range of the focal region, the dynamics at play are more com-

36



plex, similar to those captured under Propositions 1 and 4 with respect to changes in attacker entry

costs (τ). Specifically, attackers will gradually shift from standard attacks towards ransomware at-

tacks as α increases as consumer willingness to pay ransom increases. As the chance to be able to

mitigate risk via paying ransom increases at an accelerated rate (i.e., victims are increasingly more

likely to be hit with a ransomware rather than a standard attack), we see that both the attacker

and the unpatched consumer populations actually increase in α, which represents a structural de-

parture in sensitivity of such metrics compared to the pre-crypto scenario (as seen in panels (a) and

(c) of Figure 4). While fewer consumers patch at the top of the valuation spectrum, at the bottom

consumers still exit the market; hence overall we have market shrinkage. For similar reasons as

in the higher α region, attackers still find it optimal to jack up the ransom demanded. In this

intermediate α region, while direct losses to consumers are more moderate, the added risk from the

increase in attackers leads to a compounded negative effect of higher losses on welfare post-crypto.

At first it might seem that the post-crypto welfare impacts of a shift in τ in the intermediate range

and a shift in α in intermediate range are different in nature as only in the former case the welfare

changes monotonicity. However, that is not necessarily the case - in both instances (moving the

attacker entry costs or the security losses) the momentary incentives for more attackers to join

add even more stress to consumer welfare. As seen in Proposition 4 and Figure 3, that stress was

enough to induce a decline in post-welfare in intermediate τ , whereas in other regions an increase

in τ benefits consumers. With sensitivity in α, post-crypto, for large and small losses regimes,

consumers suffer if losses further increase and this trend is actually amplified in the intermediate

α range (as see in panel (d) of Figure 4, through a very fast decline in post-crypto welfare).

Now focusing solely on the post-crypto scenario, Proposition 6 reveals an interesting impact of

residual losses on welfare. While an increase in security losses (through α) has a negative impact

on welfare, an isolated increase in residual losses after paying ransom (through δ), surprisingly,
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has a positive impact on welfare. As consumers are less able to mitigate losses through paying

ransom, fewer will end up choosing that route. That lowers the ability of attackers to dip into the

more lucrative revenue stream (via extortion), which, in turn, leads to a lot of attackers exiting

the market. As such, the overall security risk in the market drops, which in turn benefits all

unpatched consumers and even leads to an expansion of the market through entry at the low end of

the valuation spectrum (as those consumers would not pay ransom and are unaffected by residual

losses but they do benefit from an overall more secure market). For this reason, opportunities for

very targeted policy interventions that shift δ higher and increase consumer burden when paying

ransom may hold promise, as discussed in Section 6.

We wrap up this this welfare sensitivity analysis by emphasizing that, post-crypto, shifts in τ ,

α, and δ induce different correlations between movements in welfare and movements in attacker

population, ransom demands, and expected total ransom paid. Shifts in τ in general move welfare

and attacker population in opposite directions (e.g., achieving higher welfare comes with the bonus

of fewer attackers), but higher welfare is associated with higher ransom amounts and total expected

ransoms paid. Moreover, in the intermediate range of τ , higher attacker entry costs can actually

shift welfare lower. On the other hand, shifts in α, for the most part, move welfare and attacker

population in the same direction, which may seem to pose a dilemma depending on which metric

lawmakers try to impact (e.g., higher welfare is associated with more attackers in the market).

However, there is an intermediate region where increasing α leads to greater attacker entry but

only serves to sharply decrease welfare due to the accelerated shift toward ransomware attacks away

from standard attacks. Last, shifting δ seems to align the effects in a way that may more easily

justify policy action. Specifically, increases in welfare are correlated with decreases in attacker

population, ransom demanded, and expected total ransom paid.
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6 Potential Policy Implications

In our study, we focused on exploring the impact of market conditions on consumer and attacker

behavior, and how, in turn, that affects security and welfare metrics. In this section, we comment

on potential policy implications by connecting particular policies to the specific market parameters

they can impact. The aim of our economic model is to highlight where policy may be fruitful by

isolating specific parameters and shifting them to determine the aggregate impact of the shift on

welfare. As policy makers can use multiple levers that shift multiple parameters concomitantly,

the effects we demonstrate as theoretically possible in isolation can help to inform subsequent

research that can substantiate the magnitude of these effects (in separate or combined form) and

account for other policy-related concerns and roll-out costs which altogether can lead to sharp

policy recommendations.

6.1 Ransomware Legislative Context

While some more digitally savvy governments such as the U.S. government are well-versed at crypto

tracing (House 2021), disruption of a currency explicitly designed to elude governmental control is

a challenging task requiring extensive coordination and diplomacy (Geller 2021). Some proposed

or enacted regulations require increased transparency around the operation of crypto exchanges

and crypto operations in general. While cryptocurrency exchanges in the U.S. are required to

implement anti-money laundering (AML) measures including reporting of large transactions and

know-your-customer (KYC) data collection, recently proposed bipartisan legislation in the U.S.,

called the Digital Asset Anti-Money Laundering (DAAML) Act, advocates, among other things,

for the extension of such regulations to the space of decentralized finance (DeFi) protocols and

decentralized autonomous organizations (DAOs), effectively closing a loophole and bringing under

AML oversight a significant and until-now largely unregulated part of the crypto industry (Lemire
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2022, Lowe et al. 2023). In the European Union, updated AML (including KYC) standards

around crypto transactions and the entities facilitating those will come into effect under the Mar-

kets in Crypto Assets (MiCA) regulation at the end of 2024, replacing the dated AMLD5 initiatives

(Moody’s 2022). In tackling the ransomware boom, international consensus is emerging that “con-

sistent international scrutiny of cryptocurrencies will be key” (Uberti 2021), with many territories

following suit (Thompson Reuters 2022). Also some general security policies require reporting of

ransom payments. Such legislation will help flag faster to a greater extent transactions related to

ransomware attacks. A much brighter spotlight will be shined on both victims and ransomware

cybercriminals.

Enhanced focus of law enforcement on ransomware operators and facilitators is also palpable.

After the U.S. Department of Justice recovered �2.3 million in cryptocurrency following the Dark-

Side’s extortion of Colonial Pipeline, Deputy Attorney General Lisa Monaco commented, “Ransom

payments are the fuel that propels the digital extortion engine, and today’s announcement demon-

strates that the United States will use all available tools to make these attacks more costly and

less profitable for criminal enterprises. We will continue to target the entire ransomware ecosys-

tem to disrupt and deter these attacks” (U.S. DOJ 2021a). In addition to going directly after

the ransomware cybercriminals, broader targeting of ecosystem facilitators is illustrated by the

recent sanctions issued by United States Department of the Treasury’s Office of Foreign Assets

Control against cryptocurrency exchanges and such as OTC Suex, Chatex, Garantex and Binance,

as well as darknet market portals such as Hydra (Gkritsi 2021, US Department of Treasury 2022,

2023). Utilizing a more coordinated approach to combat ransomware, in October 2021 the U.S.

Department of Justice created the National Cryptocurrency Enforcement Team (NCET) “to tackle

complex investigations and prosecutions of criminal misuses of cryptocurrency, particularly crimes

committed by virtual currency exchanges, mixing and tumbling services, and money laundering
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infrastructure actors (U.S. DOJ 2021b).

6.2 Pre-crypto versus Post-crypto Contexts

Other government and law enforcement measures target the ransomware cyberthreat explicitly. In

the U.S., while some radical measures such as a complete ban on ransomware payments have been

floated and even partially implemented in a couple of states (Brumfield 2021, Ikeda 2022), such

initiatives have been deemed infeasible, impractical, or suboptimal to fully implement at a federal

level and hence momentarily abandoned (CNN 2021, Segal 2021, Wheeler and Martin 2021, Kapko

2022). However, suppose we entertain for a moment the possibility that such restrictive policies

were feasible and that lawmakers were able to implement measures that effectively and completely

disincentivize such attacks. An important question in such a case would be the following: is

it socially optimal to get rid of the ransomware security threat altogether? It turns out that the

answer is complex. In Proposition 5, we formally establish that in a context with strategic attackers

making entry and attack mode decisions and strategic consumers making security decisions, social

welfare can still be higher in broad regions under the post-crypto scenario with the presence of

ransomware.

However, recognizing the potential infeasibility of the most drastic approach, legislators and

law enforcement are taking a more pragmatic approach by focusing on disrupting the processes and

requirements around such transactions. In other words, in the near future, instead of completely

eliminating the ransomware threat altogether, the policy makers aim to strategically contain it, which

we next discuss.
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6.3 Attacker Entry Costs (τ and ω)

It is not a stretch to envision today’s world more in the range of moderate rather than extreme

(low or high) attack costs, consistent with our definition of the focal region. Realistically, policies

to dial up or down the attack costs have only so much bite to them (i.e., can move τ only a limited

amount), due in many cases to policies operating within territorial jurisdictions whereas attackers

operate across physical borders (and, even then, as discussed in Proposition 4, policymakers should

be aware of the directional impact as they dial the costs).

One way to increase attacker entry costs is to increase law enforcement resources, forge collabo-

ration at both national and international level, encourage public-private partnerships, and initiate

bounty programs to disrupt cybercrime and identify/apprehend operators (e.g., INTERPOL 2021,

US Department of State 2021, White House 2021, National Cybersecurity Alliance 2022, NSA

2024). Such initiatives increase the risk for cyber criminals to perpetrate the attacks in general,

which can be quantified in our models through an increase in τ (i.e., the expected costs of attack

campaigns increase due to higher risk of being caught).

Also, more specific to the post-crypto setting, crypto oversight legislation and ransomware-

targeted law enforcement activity directly affect the entry cost of attackers. Closer monitoring

of the ecosystem of ransomware facilitators and operators, along with aforementioned updated

AML (including KYC) requirements on crypto transactions, as well as legislation that requires

the reporting of ransom payments, will flag much faster the activity of ransomware operators and

will require cybercriminals to jump through more complex hoops to be able to both collect ransom

payments in crypto wallets and also withdraw those funds. The ransomware-specific entry costs are

captured in our model with the parameter ω, and the crypto transactional costs can be captured

with s(θ) introduced in a generalized model in the extension in Appendix C.1.
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6.4 Consumer Security Losses (α)

Consumer losses are affected when legislation is enacted that indirectly impacts the IT security

threat landscape through disclosure requirements. In Mar 2022, President Biden signed into law in

the U.S. the Cyber Incident Reporting for Critical Infrastructure Act (CIRCIA), which mandated

reporting of certain categories of cyber incidents by certain entities of national strategic importance

(CISA 2022). In addition, in the particular case of data breaches, a swath of federal and state laws

mandate various degrees of reporting in the U.S. (National Conference of State Legislatures 2022).

In the European Union, data breach reporting requirements are stipulated under the General

Data Protection Regulation (Intersoft Consulting 2023) and more general cyber incident reporting

requirements for the financial sector are covered by the Digital Operations Resilience Act, which

will enter in effect in early 2025 (Morgan Lewis 2024). Such policies can increase the impact of the

attack on victims through a trust/reputation cost. In our model, this can be captured through a

shift in parameter α (whether the victim incurs the full loss regardless of the attack type, or the

residual losses in case of electing to pay ransom).

6.5 Consumer Residual Losses under Ransomware (δ)

AML (and KYC) legislation adds regulatory burden and increased reputation risk on the victim

side explicitly in the case of crypto ransom payments. The recently proposed Ransomware and

Financial Stability Act of 2024 would require further scrutiny and approval by law enforcement for

ransomware payments in excess of �100K (US Congress 2024). Hence, in our framework, we can

link the impact of such initiatives to shifts in δ, the coefficient of residual losses (which encompass

all additional costs incurred by the victims in the wake of making a ransom payment). More

precisely, on the victims’ side, we postulate that such polices will likely lead to an increase in δ.

Taken in isolation (ignoring for the moment the effect on attackers), such an effect can lead to
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resistance to related regulation due to perceived added burden on the victims. At first glance, one

might intuitively expect that, as residual losses increase, the ability of consumers to mitigate risk

via the ransom payment option decreases, which, in turn, might lead to reduced welfare. However,

Proposition 6, establishes there are regions under which welfare actually increases in δ due to the

strategic reaction by attackers.

7 Concluding Remarks

To better understand the impact of cryptocurrencies on the cybersecurity landscape, we conduct

a comparative analysis of cybersecurity metrics and social welfare prior to and after the adoption

of cryptocurrency. To that end, our modeling contribution is the development of a series of con-

nected software-use models in the presence of security externalities, where consumers and attackers

endogenously determine this risk, specifically with a continuum of heterogeneous attackers making

entry, attack mode (ransomware or traditional attacks), and ransom decisions. Leveraging these

models, we explore how market parameters impact outcomes under both pre-crypto benchmark

and post-crypto ransomware threat landscapes. We show theoretically that post-crypto scenar-

ios that include ransomware threats can be more socially desirable than pre-crypto, conventional

threat scenarios when it is not too costly for attackers to enter the market. Hence, the existence of

crypto-fueled ransomware, in itself, is not necessarily bad for cybersecurity and welfare.

We further show that directional effects (such as increasing attacker entry cost increase welfare)

that obtain under conventional attacks do not necessarily obtain under the ransomware scenario.

For example, instead of containing the ransomware threat, increasing attacker costs sometimes

increases attacker entry and is detrimental to welfare. Moreover, increasing attacker entry costs

can have secondary effects including increased demanded ransom, larger ransom paying population

segments, and higher expected total ransom paid. We also study in a similar way the impact of
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security losses as well as residual losses on these metrics. Altogether, the study of these effects

offers great value to policy makers as they consider cybersecurity and crypto policies to drive these

market parameters toward more favorable outcomes for society.

Our work’s focus is on establishing theoretical possibilities, with future empirical work needed

to assess the actual prevalence and magnitude of the outcomes we characterize. Our results are

intended as an initial exploration to shed light into how shifting directional forces in isolation (i.e.,

one market parameter at a time) can alter the dynamics of the cybersecurity landscape, especially

in the post-crypto era. Thus, quantities are normalized and a certain level of abstraction is present

to permit an in-depth analysis of the particular dynamics in play.

The derived findings serve to inform policy makers of the possible need to consider more com-

plex policies (or packages of multiple policies in tandem) that apply cybersecurity interventions

on multiple dimensions concomitantly. Such complex regulations may be able to achieve welfare

benefits without some of the secondary aforementioned effects. This presents great opportunities

for further exploratory research into how to regulate crypto and its impact on cybersecurity. Our

initial exploration looks at welfare effects net of any implementation costs required to induce a

directional shift in market primitives (i.e., costs associated with policy roll out). Armed with accu-

rate estimates of these costs, future work can perform comprehensive analyses and provide policy

recommendations aimed at inducing the effects we highlight.

Another potential direction of future research is to expand the model framework to examine

the interaction between user decisions and the additional options and costs that exist in the cy-

bersecurity ecosystem. In our paper, we focus on users’ adoption costs and patching costs as they

decide whether or not to use a system and patch it in the face of potential cybersecurity attacks

and cognizant of the externality imposed by their patching behavior on attackers’ entry incentives.

More generally, users also have the option to purchase cyberinsurance which can interact with their
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adoption and patching decisions and lead to riskier behaviors. There can also possibly be valuation-

independent incident reporting costs mandated by the government when systems are breached that

are not captured solely by an increase in our α parameter. We acknowledge that the focal costs

captured by our model provide a lower bound to the user costs present in a broader cybersecurity

context, and we believe our work can provide a foundation to explore these additional factors.

Our work identifies effects on cybersecurity metrics (such as ransom payments) as well as welfare.

Sometimes they move in the same direction as market parameters shift and sometimes not. Because

ransom payments can be directly observable on public blockchains yet welfare is more difficult to

measure, an interesting extension on the policy front would be to examine scenarios in which

planners rely on public blockchains to peek into certain ransomware activity (including volume and

destination of transactions), utilizing readily observable signals to inform and manage post-crypto

cybersecurity policy agenda. Other interesting avenues for future research include exploring how

the subsidization of patching costs or the taxation of ransomware payments (in addition to other

regulations such as AML-mandated reporting) can influence the comparison between pre-crypto

and post-crypto attack metrics.
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A.1 Focal Region Conditions

Define the functionsH(y) = q−1(y)q′(q−1(y))
y andG(ω) =
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. The parameter conditions for the focal region are then given by:
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The essence of the conditions is that parameter values need to be within an intermediate range

such that consumer segments do not disappear and not all attackers enter the market. These

conditions are derived from conditions on making sure the consumer thresholds are ordered properly

(i.e., ensuring 0< ṽn< ṽr < ṽp< 1 (i.e., that no consumer has an incentive to switch strategies),

0<a∗< 1, and no attacker has any incentive to deviate to charging a different ransom, switching

from conducting ransomware to only conducting standard attacks or vice versa. It is important

to note that our focal region only serves to simplify the paper while still establishing the main

insights; our insights can be shown to hold over broader regions and other market structures.

A.2 Properties of q(a)

We denote the probability that a consumer is randomly hit by a security attack by q(a(Φ)), where

a(Φ) is endogenously determined in equilibrium. As a function of the attacker population size

a, the function q(a) is assumed to be increasing and concave, with q(0)= 0, q(1)≤ 1, q′(0)<∞,

A.1



and the attacker elasticity of risk is decreasing, i.e., η′q(a)< 0 where ηq(a) = (dq/q)/(da/a) such

that there is a diminishing marginal increase in risk as more attackers enter, both in absolute and

relative terms. This elasticity assumption captures how the relative increase in risk diminishes

as the attacker population size increases, which is expected if the marginal risk from additional

attackers decreases. Examples of specific functional forms that satisfy this elasticity assumption

are q(a) = 1− (1− ξ)a, q(a) = ξa
a+1 , q(a) = ξ log(1 + a), q(a) = C1

1−e−C2a

1−e−C2
, and q(a) = C1a+ C2a

2

(where the applicable ranges for the parameters ξ, C1, and C2 depend on the specific functional

form). For illustration purposes throughout the paper, we use q(a) = C1a+C2a
2, with C1 ∈ (0, 2)

and C2 ∈ (−C1
2 ,min(0, 1 − C1)) to ensure q(0) = 0, q(1) ≤ 1, and q(a) is increasing, concave in

a ∈ (0, 1). Although we use this functional form for figures, the proofs are done with a general q(a)

(i.e., without assuming a specific q(a)) so that the propositions apply more generally for any q(a)

meeting the stated general conditions.
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Appendix B:
Sensitivity Analysis

In this appendix, we examine the threshold in attacker entry costs (τ) that separates whether pre-

crypto or post-crypto welfare is superior. In particular, by part (ii) of Proposition 5, post-crypto

welfare exceeds pre-crypto welfare for lower τ , whereas pre-crypto welfare exceeds post-crypto

welfare for higher τ . We now study how the threshold in attacker entry costs, τ̂ , varies in market

parameters. There are two cases depending on whether attackers split in their attack modes in the

post-crypto context. For the simpler case where they do not, τ̂ satisfies:

τ̂ =
cpρ

αq−1
(

cp
ρ(1+ω)

)2 +
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+O(κ+ δ)2

(B.1)

As can be seen, although the expression can be written, it is too complex to readily derive

comparative statics. Therefore, we study both cases numerically and provide illustrations on how

τ̂ varies in the market parameters. We utilize the same common parameter values used throughout

the paper for consistency.

In panel (a) of Figure B.1, we examine how the threshold moves in patching costs. The threshold

τ̂ decreases in cp. However, note that the focal region bounds also adjust when patching costs

change, and overall the portion of the space where post-crypto welfare is superior remains fairly

consistent. We only vary the cost by plus or minus 10% for illustration purposes, but the spirit of

what we describe expands further. In panel (b) of Figure B.1, we examine how the threshold moves

in the gains to pre-crypto attacks while holding the post-crypto gains (ρ̃) constant. In this case,

the threshold τ̂ increases in ρ. Moreover, higher ρ leads to an expansion of post-crypto welfare

superiority. Finally, in panel (c) of Figure B.1, we examine how the threshold moves in security

losses. The threshold τ̂ decreases in α. In this case, an increase in α leads to an expansion of pre-

crypto welfare superiority and a simultaneous reduction in the region where post-crypto welfare is

higher.
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Figure B.1: The impact of patching costs (cp), pre-crypto attack gain (ρ), and security loss factor
(α) on the threshold that designates when the post-crypto context is welfare superior. The baseline
parameter values are: cp = 0.3, δ = 0.02, κ = 0.05, α = 2.8, ρ = 1.6, ρ̃ = 1.3, ω = 0.1, and
q(a) = 0.9a− 0.4a2. Panels (a), (b), and (c) vary cp, ρ, and α, respectively, up to plus or minus 10
percent.
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Appendix C:
Generalized Model and Proof of Main Results

In the main body of the paper, attacker heterogeneity is captured exclusively in terms of attacker

entry cost. However, in a more general setup, one could conceive of multi-dimensional attacker

heterogeneity, both at entry cost and revenue levels. As such, in this Appendix, we first present

the generalized model (introduced below in Appendix C.1), with the model in the main body of

the paper representing a special case of this general model. To that end, we derive the equilibrium

market structure directly using the generalized model and then derive the main results in the paper

under the simplified assumptions.

Moreover, we further show in Appendix D that the insights from the main model continue to

hold under the generalized attacker heterogeneity model. To streamline the presentation, in the

main body of the paper we focus on the simplified model, and discuss the analysis of the generalized

model in the Appendix.

C.1 Generalized Model of Attacker Heterogeneity

As mentioned above, we consider from the beginning a general model that incorporates attacker

heterogeneity at both entry cost and revenue levels. More precisely, in this generalized version, the

attacker revenues associated with both standard attacks and ransomware are type dependent.

Extending our pre-crypto benchmark model from Section 3.1, if an attacker of type θ hits a

victim with a standard attack, then the attacker will derive ρλ(θ) from the attack, where λ(·) is

weakly increasing, differentiable, with λ(·)> 0 and λ(1)= 1. Thus, for an attacker with type θ, the

expected utility is given by:

Ua
BM

(θ,Φ)�

⎧⎨
⎩

q(a(Φ))× ρλ(θ)×u(Φ)
a(Φ) − τ(1− θ) if γ(θ)=E ;

0 if γ(θ)=NE .
(C.1)

Similarly, under the post-crypto ransomware model, an attacker derives ρ̃λ(θ). Moreover, if the

victim pays the attacker’s ransom R, then the attacker retains revenue R × s(θ), where s(θ) is a

weakly increasing, differentiable function of θ with s(·)> 0 and s(1)= 1. Both of these functions (λ

and s) capture that less-skilled attackers (those with lower θ) retain less when extracting revenue

(through slippage from one’s lower ability in the collection phase of ransom payments and having
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a higher chance of being caught across both standard and ransomware attacks). Thus, for an

attacker with type θ, generalizing equation (9) from Section 3.2, the expected utility in the post-

crypto context is given by:

Ua
RW

(θ, Φ̃)�

⎧⎪⎪⎨
⎪⎪⎩

q(a(Φ̃))×[ρ̃λ(θ)×(u(Φ̃)−r(R,Φ̃))+Rs(θ)×r(R,Φ̃)]
a(Φ̃)

− τ(1− θ)(1 + ω) if γ̃(θ)= (ER,R) ;

q(a(Φ̃))× ρ̃λ(θ)×u(Φ̃)

a(Φ̃)
− τ(1− θ) if γ̃(θ)=E ;

0 if γ̃(θ)=NE .

(C.2)

In this setting, in equilibrium, as long as these type-dependent revenue gain functions satisfy a

monotone property (see equation (C.14) in Appendix C.1.2), the equilibrium characterization will

yield threshold structures consistent with the ones established in the main model in Lemmas 1 and

2 (but with additional details, as discussed further in Appendix D).

Throughout the paper, we focus on the consumer market equilibrium outcome in which the

market structure consists of all possible segments (in particular, some users decide to patch, some

decide not to patch and would not pay ransom if hit, some decide not to patch but would pay

ransom if hit, and some choose not to adopt). Within this consumer market structure, there are

two distinct attacker market structures: one in which some attackers go solely for standard attacks

and some attackers develop and deploy ransomware, and another in which all attackers who join the

attacker market attack with ransomware. In the next two subsections, we derive the equilibrium

R∗(θ) that arises in the generalized model and the equilibrium consumer and attacker thresholds

defining the segmentation for each scenario.

Model in the main body of the paper (Sections 3-5):

Special case of the above generalized model with attacker heterogeneity only at the entry cost

level (i.e., s(θ) = λ(θ) = 1 for all θ).

Under these simplifying assumptions, equations (C.1) and (C.2) reduce to equations (4) and

(9), respectively.

Note: In this simplified model, attacker entry decisions are type dependent but all attackers

solve the same optimization problem net of entry costs. As such, they optimally choose the

same ransom amount in equilibrium.
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C.1.1 Market Segmentation and Equilibrium R∗(θ) with One Attacker Segment under

Post-Crypto Ransomware Setting

In this scenario, no attacker goes for standard attacks in equilibrium. Instead, all attackers who

join the attacker market opt to choose to attack with ransomware.

To derive the equilibrium R∗(θ) and the segment thresholds for this equilibrium, we first char-

acterize how the consumer thresholds respond to the attacker population size and a given attacker

strategy profile R(θ). After understanding how consumers respond, we derive the equilibrium R∗(θ)

and threshold attacker type who joins.

To establish the consumer thresholds, we consider their different options and respective payoffs.

Let γ̃ : Θ → Sa
RW

and σ̃ : V → Sc
RW

denote the strategy functions of the attackers and the

consumers, respectively, based on the heterogeneity in each group. For the given attacker-consumer

profile Φ̃ =<γ̃, σ̃>, the expected utility for a consumer with valuation v is given in Section 3.2,

in equation (7). Given some consumer type v, from (7), since the first option protects the user

against valuation-dependent losses while the second option requires the user to bear some valuation-

dependent loss, this means that higher-valuation consumers would prefer to patch rather than not

patch.

In the equilibrium that we construct, not all unpatched users will want to pay some ransom (i.e.,

for some users, all ransoms charged in equilibrium will be higher than their maximum thresholds

for paying a ransom). Of those users who remain unpatched, consider which consumers would pay

ransom. If a user were to face the decision of paying ransom amount R, then they would trade off

R + δαv vs. αv. They would pay if their loss upon simply paying the ransom is less than their

total loss αv (i.e., they would pay if R+ δαv ≤ αv). Rearranging, this means that given an R, only

users of type v ≥ R
α(1−δ) would pay. This implies that if all consumer market segments are present

in equilibrium, then the lowest tier of consumers consists of those users who are not willing to pay

ransom.

Consider the lowest consumer type who uses the software, denoted vu. We simplify the nota-

tion by letting a denote the size of the attacker population and θ denote the attacker type joining

the market. Since the threshold consumer is not willing to pay any ransom charged in equilib-

rium, their expected net payoff would be v − κ− q(a)

∫ 1

θ
αv

(
1

a

)
dθ. Since the threshold type

vu deciding to enter the market has zero net surplus in equilibrium, this means that vu solves

v − κ− q(a)

∫ 1

θ
αv

(
1

a

)
dθ = 0. Since there is only one attacker segment in this scenario and the

A.7



higher θ attackers have lower costs of entry than lower θ ones, this means that a = 1 − θ, or

equivalently, that θ = 1− a. Substituting this in and simplifying, we have that vu = κ
1−αq(a) .

Next, consider the type indifferent between patching and remaining unpatched. Since the

higher tier of consumers willing to remain unpatched would be willing to pay ransoms if hit, this

means that this type (denoted vp) would be indifferent between patching and remaining unpatched

(paying ransom if hit). In equilibrium, this type is willing to pay any ransom charged by an

attacker in equilibrium. Otherwise, if there are some ransoms being charged that are higher than

what the highest v willing to pay ransom (i.e., vp) would be willing to pay, then no one with

valuations less than vp would be willing to pay that ransom either (and so the attacker who

charges that ransom would have a profitable deviation of lowering their ransom charge). Hence,

vp is willing to pay any ransom amount charged in equilibrium by any attacker. Let R(θ) denote

the ransoms charged as a function of θ. Since vp is indifferent between patching and remaining

unpatched (and being willing to pay any ransom charged in equilibrium by an attacker), vp solves:

v − κ− cp = v − κ− q(a)

∫ 1

θ
(R(θ) + δαv)

(
1

a

)
dθ. Again substituting in θ = 1−a and simplifying,

we have that vp =
1

αδ

(
cp
q(a)

−
∫ 1
1−aR(θ)dθ

a

)
.

Given how vu and vp respond to attackers’ strategies, we can derive the equilibrium R∗(θ).

Consider an attacker of type θ entering the attacker market and deciding what R to play. As-

suming other attackers are playing according to some strategy profile R̃(θ) and consumers are best

responding to this, we can find this attacker’s optimal R.

The unpatched population size is u = vp − vu. Suppose the attacker sets R as their ransom.

Then v ≥ R
α(1−δ) would be willing to pay. Given that vp is the highest v willing to pay a ransom,

the size of the consumer population willing to pay ransom R is vp − R
α(1−δ) . Then in choosing R,

the attacker of type θ maximizes

q(a)

a

(
Rs(θ)

(
vp − R

α(1− δ)

)
+ ρ̃λ(θ)

(
R

α(1− δ)
− vu

))
− τ(1− θ)(1 + ω). (C.3)

Taking the derivative with respect toR, the first-order condition givesR∗ = 1
2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
.

The second-order condition is satisfied since the second-derivative with respect to R of the expected

profit function above is −2q(a)s(θ)
aα(1−δ) , which is positive.

Note that from R∗ = 1
2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
, we can substitute in our expression for vp to get

R∗ = 1
2

((
1
αδ

(
cp
q(a) −

∫ 1
1−a R(θ)dθ

a

))
α(1− δ) + ρ̃λ(θ)

s(θ)

)
. In other words, if attackers between types
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θ = 1 − a and θ = 1 choose ransoms according to the function R(θ) and all consumers respond

accordingly, then the previous expression is what type θ would optimally choose for their ransom.

To derive what the equilibrium R∗(θ) is, we need to find a function R(θ) such that

R(θ) =
1

2

((
1

αδ

(
cp
q(a)

−
∫ 1
1−aR(θ)dθ

a

))
α(1− δ) +

ρ̃λ(θ)

s(θ)

)
. (C.4)

From the previous expression, we see thatR(θ) can be written in a way thatR(θ) = 1
2

(
ρ̃λ(θ)
s(θ)

)
+C

for some constant C (i.e., something that is constant in θ). Substituting R(θ) = 1
2

(
ρ̃λ(θ)
s(θ)

)
+C into

the right-hand side of (C.4), we have thatR(θ) = 1
2

((
1
αδ

(
cp
q(a) −

∫ 1
1−a

1
2

(
ρ̃λ(θ)
s(θ)

)
dθ

a − C

))
α(1− δ) + ρ̃λ(θ)

s(θ)

)
.

Equating this expression to (C.4) and solving for C, we have that C =

∫ 1

1−a

R(θ)

a
dθ−

∫ 1

1−a

ρ̃λ(θ)

2as(θ)
dθ.

Let X =

∫ 1

1−a

R(θ)

a
dθ, so C = X −

∫ 1

1−a

ρ̃λ(θ)

2as(θ)
dθ. Substituting this expression for C into

R(θ) = 1
2

(
ρ̃λ(θ)
s(θ)

)
+ C, we have that

R(θ) =
1

2

(
ρ̃λ(θ)

s(θ)

)
+X −

∫ 1

1−a

ρ̃λ(θ)

2as(θ)
dθ. (C.5)

From (C.4), replacing
∫ 1
1−a

R(θ)
a dθ withX givesR(θ) =

1

2

((
1

αδ

(
cp
q(a)

−X

))
α(1− δ) +

ρ̃λ(θ)

s(θ)

)
.

Solving for X in this equation gives X =
s(θ)(cp(1− δ)− 2δq(a)R(θ)) + δρ̃q(a)λ(θ)

(1− δ)q(a)s(θ)
. Substituting

this back into (C.5) and then solving for R(θ) gives the closed-form solution for R∗(θ):

R∗(θ) =
1

2

(
ρ̃λ(θ)

s(θ)

)
+

(1− δ)
(
cp − q(a∗)

(∫ 1
1−a∗

ρ̃λ(θ)
2a∗s(θ) dθ

))
(1 + δ)q(a∗)

, (C.6)

where a∗ will be characterized later in (C.8).

From the earlier equation R∗ = 1
2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
, since this holds for any type θ, we can

solve for vp in terms of R∗(θ). This gives vp = 2R∗(θ)s(θ)−ρ̃λ(θ)
αs(θ)−αδs(θ) . Substituting in (C.6) into the

previous equation, we have

vp =
2cp − 2q(a∗)

(∫ 1
1−a∗

ρ̃λ(θ)
2a∗s(θ) dθ

)
αδq(a∗) + αq(a∗)

. (C.7)

To find the equilibrium attacker population size a∗, we look back at (C.3). Substituting in
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vp =
2cp − 2q(a)

(∫ 1
1−a

ρ̃λ(θ)
2as(θ) dθ

)
αδq(a) + αq(a)

and vu = κ
1−αq(a) into this expression, substituting in (C.6) for

both R and R(θ), and noting that the threshold type θ can again be written as θ = 1− a and has

zero net profit, we have that the equilibrium attacker population size a∗ solves the equation

aτ(1 + ω) =

(
4(1− δ)s(1− a)

(
acp − q(a)

(∫ 1
1−a

ρ̃λ(θ)
2s(θ) dθ

))
2

a(1 + δ)2q(a)
+

4ρ̃λ(1− a)
(
q(a)

(
aα(κδ + κ+ cp) + (1− αq(a))

(∫ 1
1−a

ρ̃λ(θ)
2s(θ) dθ

))
− acp

)
(1 + δ)(αq(a)− 1)

+

aρ̃2λ(1− a)2q(a)

(1− δ)s(1− a)

)
. (C.8)

We use the above (along with work from subsequent sections in this appendix) as part of the

numeric exploration part of the paper.

C.1.2 Market Segmentation and Equilibrium R∗(θ) with Two Attacker Segments un-

der Post-Crypto Ransomware Setting

The derivation of this equilibrium is similar to that of the previous section, with the difference being

that some attackers go for standard attacks in equilibrium in this scenario. We will show that the

higher θ attackers would choose to attack with ransomware over standard attacks in equilibrium

under some assumptions. Then we will skip over some of the details of the derivation since the

derivation is very similar to that of the previous section and just provide the expressions for the

equilibrium R∗(θ), consumer thresholds, and the equations the attacker population sizes solve.

Consider the lowest consumer type who uses the software, denoted vu. Let a denote the size of

the attacker population in (7) and θ denote the attacker type joining the market. Let θ̄ denote the

attacker type indifferent between conducting standard attacks and ransomware attacks. We will

show under some assumptions later that higher attacker types prefer to conduct ransomware, so

that a2 = 1− θ̄ is the size of the attacker population conducting ransomware attacks, a1 = θ̄− θ is

the size of the attacker population conducting standard non-ransomware attacks, and a = a1 + a2

is the total size of the attacker population.

Same as in the previous subsection, since the threshold consumer is not willing to pay any

ransom charged in equilibrium, their expected net payoff would be v − κ− q(a)

∫ 1

θ
αv

(
1

a

)
dθ.

Since the threshold type vu deciding to enter the market has zero net surplus in equilibrium, this
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means that vu solves v − κ− q(a)

∫ 1

θ
αv

(
1

a

)
dθ = 0. Since a = 1 − θ and a = a1 + a2, we have

that vu = κ
1−αq(a1+a2)

.

Next, consider the type indifferent between patching and remaining unpatched. Since the higher

tier of consumers willing to remain unpatched would be willing to pay ransoms if hit, this means

that this type (denoted vp) would be indifferent between patching and remaining unpatched (paying

ransom if hit). As in the previous subsection, this type is willing to pay any ransom charged by

an attacker in equilibrium. What is different from the previous subsection is that now consumers

have weights on the chance of ransomware attack vs. standard attacks.

Let R(θ) denote the ransoms charged as a function of θ for ransomware attackers. Since vp is

indifferent between patching and remaining unpatched (facing the risk of both ransomware and stan-

dard attacks), vp solves: v − κ− cp = v − κ− q(a)

(∫ 1

θ̄
(R(θ) + δαv)

(
1

a

)
dθ +

∫ θ̄

θ
(αv)

(
1

a

)
dθ

)
.

Solving for v and characterizing the expression in terms of a1 and a2 instead of θ and θ̄, we have

that

vp =
(a1 + a2)

(
cp − q(a1 + a2)

(∫ 1
1−a2

R(θ)
a1+a2

dθ
))

α(a1 + a2δ)q(a1 + a2)
. (C.9)

Given how vu and vp respond to attackers’ strategies, we can derive the equilibrium R∗(θ).

Consider an attacker of type θ entering the attacker market and deciding what R to play. As-

suming other attackers are playing according to some strategy profile R(θ) and consumers are best

responding to this, we can find this attacker’s optimal R.

Same as in the previous section, for a type θ ransomware attacker choosing R, that attacker

q(a)

a

(
Rs(θ)

(
vp − R

α(1− δ)

)
+ ρ̃λ(θ)

(
R

α(1− δ)
− vu

))
− τ(1− θ)(1 + ω). (C.10)

The first-order condition gives R∗ = 1
2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
. The second-order condition is

satisfied since the second-derivative with respect to R of the expected profit function above is

−2q(a)s(θ)
aα(1−δ) , which is positive. Substituting R∗ = 1

2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
into (C.10) to get the profit

function at the optimal R, we get

Π(R∗) =
q(a)

(
ρ̃λ(θ)

(
ρ̃λ(θ)

αs(θ)−αδs(θ) − 4vu + 2vp

)
− α(δ − 1)v2ps(θ)

)
4a

− (1− θ)τ(1 + ω) (C.11)

Consider what this attacker would get upon opting to go for standard attacks instead of ran-
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somware. Denoting their profit upon entry as a standard attacker as Π(E), they would get:

Π(E) =
q(a)

a
(ρ̃λ(θ) (vp − vu))− τ(1− θ). (C.12)

Comparing (C.12) with (C.11), an attacker of type θ would prefer conducting ransomware over

standard attacks if

4(1− δ)τωθ +
q(a)(ρ̃λ(θ) + α(δ − 1)vps(θ))

2

aαs(θ)
≥ 4τω(1− δ). (C.13)

Taking the derivative of the left-hand side with respect to θ, we get

q(a)
(
α2(1− δ)2v2ps(θ)

2 − ρ̃2λ(θ)2
)

aαs(θ)2
s′(θ)+

2ρ̃q(a)(ρ̃λ(θ)− α(1− δ)vps(θ))

aαs(θ)
λ′(θ)+4(1−δ)τω. (C.14)

This is positive as long as s′(θ) and λ′(θ) are sufficiently close to 0 for all θ. Since s(θ) and

λ(θ) are increasing functions of θ such that s(1) = 1 and λ(1) = 1, as long as s(0) and λ(0) are

not too small (i.e., close enough to 1 rather than close to 0), then the left-hand side of (C.13) is

monotonically increasing in θ so that higher types of attackers would prefer conducting ransomware

over standard attacks. Under this assumption, we can derive the equilibrium R∗(θ) that arises.

Following the proof of the previous subsection, we substitute vp from (C.9) into the solution

from the first-order condition, R∗ = 1
2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
. In the same way we had done in the

previous subsection, we can find R∗(θ) in terms of the attacker population segments a1 and a2:

R(θ) =
(1− δ)

(
cp(a

∗
1 + a∗2)− a∗2q(a∗1 + a∗2)

(∫ 1
1−a∗2

ρ̃λ(θ)
2a∗2s(θ)

dθ
))

(2a∗1 + a∗2δ + a∗2)q(a∗1 + a∗2)
+

ρ̃λ(θ)

2s(θ)
. (C.15)

From the earlier equation R∗ = 1
2

(
vpα(1− δ) + ρ̃λ(θ)

s(θ)

)
, since this holds for any type θ, we

can solve for vp in terms of R∗(θ). As in the previous subsection, this gives vp = 2R∗(θ)s(θ)−ρ̃λ(θ)
αs(θ)−αδs(θ) .

Substituting in (C.15) into the previous equation, we have

vp =
2cp(a

∗
1 + a∗2)− 2a∗2q(a∗1 + a∗2)

(∫ 1
1−a∗2

ρ̃λ(θ)
2a∗2s(θ)

dθ
)

α(2a∗1 + a∗2δ + a∗2)q(a∗1 + a∗2)
. (C.16)

Using the previous expression for vp along with vu = κ
1−αq(a1+a2)

, we derive the equations that a1

and a2 have to solve. Using that type θ is indifferent between entering and not entering, this means

that this type is indifferent between conducting standard attacks and not being in the market at all
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(obtaining zero net profit). On the other hand, type θ̄ is indifferent between conducting ransomware

attacks and standard attacks. These two equations defining the threshold attacker types can be

expressed in terms of the equations the equilibrium a∗1 and a∗2 solve below:

ρ̃
(
q(a1 + a2)

(
(2− 2αq(a1 + a2))

(∫ 1
1−a2

ρ̃λ(θ)
2s(θ) dθ

)
+ 2a1α(κ+ cp) + a2α(κδ + κ+ 2cp)

)
− 2cp(a1 + a2)

)
α(a1 + a2)(2a1 + a2δ + a2)(αq(a1 + a2)− 1)

−

τ(a1 + a2) = 0 (C.17)

and

q(a1 + a2)

a1 + a2

(
−

(δ − 1)s(1− a2)
(
cp(a1 + a2)− q(a1 + a2)

(∫ 1
1−a2

ρ̃λ(θ)
2s(θ) dθ

))
2

α(2a1 + a2δ + a2)2q(a1 + a2)2
+

ρ̃λ(1− a2)
(
cp(a1 + a2)− q(a1 + a2)

(∫ 1
1−a2

ρ̃λ(θ)
2s(θ) dθ

))
α(2a1 + a2δ + a2)q(a1 + a2)

+
κρ̃λ(1− a2)

αq(a1 + a2)− 1
− ρ̃2λ(1− a2)

2

4α(δ − 1)s(1− a2)

)
−

(
2ρ̃

(
cp(a1 + a2)− q(a1 + a2)

(∫ 1
1−a2

ρ̃λ(θ)
2s(θ) dθ

))
α(a1 + a2)(2a1 + a2δ + a2)

+
κρ̃q(a1 + a2)

(a1 + a2)(αq(a1 + a2)− 1)
+ a2τω

)
= 0.

(C.18)

We use the above equations (along with work from the rest of the appendix) as part of the

numeric exploration part of the paper. The core part of the paper focuses on when λ(θ) = 1 and

s(θ) = 1 for all θ, allowing for more tractable analyses. In the numeric explorations section, we

explore how robust the results are as we relax the assumption that λ(θ) = 1 and s(θ) = 1 for all θ.

C.2 Pre-Crypto Benchmark Setting - Equilibrium Outcome with λ(θ) = 1 for

all θ

To start off the core section of the paper, we characterize the benchmark equilibrium outcome (prior

to crypto-enabled ransomware). In a scenario without ransomware in the market, consumers who

use the software have two options when a patchable vulnerability arises: 1) Patch or 2) Remain

unpatched and bear the risk associated with remaining unpatched. Throughout the paper, we focus

on the equilibrium outcome in this benchmark scenario in which some users patch and some do
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not. Letting Φ =<γ, σ> denote an attacker-consumer strategy profile, the net utility function is:

U c
BM

(v,Φ)�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v − κ− cp if σ(v)= (A,P ) ;

v − κ− q(a(Φ))× αv if σ(v)= (A,NP ) ;

0 if σ(v)= (NA,NP ) .

(C.19)

Simplifying the notation by letting a denote the size of the attacker population that arises,

consumers who patch get a net payoff of v − κ− cp while consumers who remain unpatched get a

net payoff of v − κ − q(a) × αv. Since patching protect from valuation-dependent losses, higher-

valuation users would patch. Specifically, comparing those two options, v ≥ cp
αq(a) would prefer to

patch over remaining unpatched. Define this threshold as vp, the consumer type indifferent between

patching and not patching. On the lower end of the market, the consumer type indifferent between

remaining unpatched and not using the software solves v − κ− q(a)αv = 0, so vu = κ
1−αq(a) is the

type indifferent between using the software and not using the software.

From the attacker’s perspective in the benchmark case, they just decide whether or not to join

the market (i.e., they do not set ransoms prior to crypto-enabled ransomware). An attacker of type

θ’s net profit upon entering the market to attack is given by

Π(E) =
q(a)

a
ρ (vp − vu)− τ(1− θ). (C.20)

The marginal type θ entering the attacker market has zero profit, so that type is such that

Π(E) = 0. Noting that θ = 1− a, we have that the equilibrium attacker population size a∗ solves

aτ =
cpρ

aα
− κρq(a)

a− aαq(a)
. (C.21)

As a function of a, note that the right-hand side has a limit of +∞ as a → 0 (since
cpρ
aα → +∞

while κρq(a)
a−aαq(a) → κρq′(0) by L’Hôpital’s rule). The right-hand side goes to −∞ as a → q−1

(
1
α

)
.

The derivative of the right-hand side of (C.21) is − cpρ
a2α

+
ρ(−aq′(a)−αq(a)2+q(a))

a2(αq(a)−1)2
κ. For sufficiently

small κ, this is negative so that the right-hand side is decreasing in a from +∞ as a → 0 to −∞
as a → q−1

(
1
α

)
. On the other hand, the left-hand side is simply a linearly increasing function of

a. Altogether, this implies that for sufficiently small κ, there is a unique solution in a to (C.21)

between 0 and q−1
(
1
α

)
. This defines a∗ in the benchmark case. Using this a∗, the equilibrium
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consumer thresholds can be defined as

v∗p =
cp

αq(a∗)
(C.22)

and

v∗u =
κ

1− αq(a∗)
. (C.23)

In the next subsection, we characterize the equilibrium outcome in the post-crypto scenario

(i.e., a world in which attackers can attack with ransomware).

C.3 Post-Crypto Ransomware Setting - Equilibrium Outcome with λ(θ) = 1 and

s(θ) = 1 for all θ

In the focal region, two distinct attacker market structures arise: one in which some attackers go

for standard attacks and some attackers develop and deploy ransomware, and another in which all

attackers who join the attacker market attack with ransomware. In the next two subsections, we

characterize both of these outcomes.

C.3.1 Equilibrium Outcome with One Attacker Segment

This is a special case of the equilibrium characterized in Subsection C.1.1, with λ(θ) = 1 and

s(θ) = 1 for all θ.

From Subsection C.1.1 and using λ(θ) = 1 and s(θ) = 1 for all θ, we have

R∗(θ) =
δρ̃q(a) + cp(1− δ)

(1 + δ)q(a∗)
(C.24)

for all θ ≥ 1− a∗, where a∗ solves

aτ(1 + ω) =
a(δρ̃q(a) + cp(1− δ))2

α(1− δ)(aδ + a)2q(a)
− κρ̃q(a)

a− aαq(a)
. (C.25)

The derivative of the right-hand side of the equation defining a∗ with respect to a has a zero-

order Taylor series expansion around κ = 0 and δ = 0 of − c2p
a2αq(a)

− c2pq
′(a)

aαq(a)2
+ O(κ + δ), which is

negative for κ and δ close enough to 0. Taking the limit as a → 0 from above of the right-hand side

of (C.25), we have that the right-hand side goes to +∞ as a → 0 from above. As a → q−1
(
1
α

)
from

below, the right-hand side has a limit of −∞. Altogether, this means that for sufficiently small c
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and δ, there’s a unique solution to the equation defining a∗ between 0 and q−1
(
1
α

)
.

Given this a∗, the equilibrium ransom charged is given in (C.24). From substituting λ(θ) = 1

and s(θ) = 1 for all θ into (C.7), we have

vp =
2cp − ρ̃q(a∗)
αq(a∗)(1 + δ)

. (C.26)

Also, we can characterize the marginal type indifferent between using the software and not

using it in equilibrium. As was the case in Subsection C.1.1,

vu =
κ

1− αq(a∗)
. (C.27)

Lastly, we can define the consumer threshold type willing to pay some ransom in equilibrium.

Since a consumer of type v is willing to pay ransom if R+ δαv ≤ αv, this means that all v ≥ R
α(1−δ)

is willing to pay ransom R rather than not paying it. Substituting in (C.24) for R, we can define

type

vr =
cp(1− δ) + δρ̃q(a∗)

αq(a∗)(1− δ2)
(C.28)

as the type indifferent between paying ransom and not paying ransom in equilibrium.

Before we get into characterizing the conditions under which this case can arise in equilibrium

(for example, conditions to ensure 0<vu<vr <vp< 1, among other things), we first characterize

the thresholds in the equilibrium outcome with two segments of attackers.

C.3.2 Equilibrium Outcome with Two Attacker Segments

This is a special case of the equilibrium characterized in Subsection C.1.2, with λ(θ) = 1 and

s(θ) = 1 for all θ.

From Subsection C.1.2 and using λ(θ) = 1 and s(θ) = 1 for all θ, we have

R∗(θ) =
cp(1− δ)(a∗1 + a∗2) + ρ̃(a∗1 + a∗2δ)q(a∗1 + a∗2)

(2a∗1 + a∗2δ + a∗2)q(a∗1 + a∗2)
(C.29)

for all θ ≥ 1 − a∗2, where a∗1 and a∗2 (the attacker population sizes for standard attacks and ran-

somware attackers, respectively) solve

ρ̃(2cp(a1 + a2)− a2ρ̃q(a1 + a2))

α(a1 + a2)(2a1 + a2δ + a2)
+

κρ̃q(a1 + a2)

(a1 + a2)(αq(a1 + a2)− 1)
− τ(a1 + a2) = 0 (C.30)
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and

c2p(1− δ)2(a1 + a2)− (1− δ)q(a1 + a2)
(
a2ατω(2a1 + a2δ + a2)

2 + 2cpρ̃(a1 + a2)
)
+

ρ̃2(a1 + a2)q(a1 + a2)
2 = 0 (C.31)

Higher θ attackers prefer conducting ransomware over standard attacks from the argument in

Subsection C.1.2, namely that the left-hand side of (C.13) is monotonically increasing in θ due to

λ(θ) = 1 and s(θ) = 1 for all θ. This means that types θ ≥ θ̄ = 1− a∗2 conduct ransomware attacks

and types θ ∈ [θ, θ̄) conduct standard attacks (where θ = 1− a∗1 − a∗2).

Given a∗1 and a∗2, the equilibrium ransom charged is given in (C.29). From substituting λ(θ) = 1

and s(θ) = 1 for all θ into (C.16), we have

vp =
2cp(a

∗
1 + a∗2)− a∗2ρ̃q(a∗1 + a∗2)

α(2a∗1 + a∗2δ + a∗2)q(a∗1 + a∗2)
. (C.32)

As was the case in Subsection C.1.2, the marginal type indifferent between using the software

and not using it in equilibrium is given by:

vu =
κ

1− αq(a∗)
=

κ

1− αq(a∗1 + a∗2)
. (C.33)

Lastly, we can define the consumer threshold type willing to pay some ransom in equilibrium.

Since a consumer of type v is willing to pay ransom if R+ δαv ≤ αv, this means that all v ≥ R
α(1−δ)

is willing to pay ransom R rather than not paying it. Substituting in (C.29) for R, we can define

type

vr =
cp(1− δ)(a∗1 + a∗2) + ρ̃(a∗1 + a∗2δ)q(a∗1 + a∗2)

α(1− δ)(2a∗1 + a∗2δ + a∗2)q(a∗1 + a∗2)
. (C.34)

as the type indifferent between paying ransom and not paying ransom in equilibrium.

In the next subsection, we characterize the focal region of parameters that we focus on through-

out the analysis. This focal region is the intersection of the set of conditions needed for 0<vu<vp< 1

to arise under the benchmark scenario, 0<vu<vr <vp< 1 to arise under the ransomware scenario,

and a∗< 1.
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C.4 Proofs of Lemmas and Propositions in Main Text

Proof of Lemmas 1 and 2: This follows from the work in the prior subsections. To summarize,

we will repeat some of the arguments here.

To establish consumer preference rankings (and a threshold structure for the equilibrium), note

that patching protects users from valuation-dependent losses while remaining unpatched exposes

users to valuation-dependent losses. This implies higher-valuation users prefer to patch over re-

maining unpatched. Similarly, since paying ransom reduces valuation-dependent losses compared

to not paying ransom, higher-valuation users prefer to pay ransoms than not pay. Specifically, com-

paring the net utility of the different options, v ≥ cp
αq(a) prefer to patch over remaining unpatched

in the benchmark case (equivalently, these users prefer to patch over remain unpatched and not

pay ransom in the ransomware scenario). Given a ransom R, users with valuations v ≥ R
α(1−δ)

prefer to pay ransom over not paying ransom. Similarly, users with valuations v ≥ cp−Rq(a)
αδq(a) prefer

to patch over remaining unpatched (facing chance of attack q(a)) and paying ransom R if hit. This

establishes the consumer preference ordering and the threshold equilibrium structure.

To see that higher θ attackers prefer to conduct ransomware attacks over standard attacks, see

the argument following (C.13). That higher θ attackers prefer to enter the market at all over not

entering follows from the cost function being linearly decreasing in θ. For more details relating

to Lemma 1 and the equilibrium characterization of the benchmark case, see Subsection C.2. For

more details relating to Lemma 2 and the equilibrium characterization of the ransomware case, see

Subsection C.3. �

Proof of Remark 1: Under the benchmark scenario, the attacker population size is given in

(C.21). Viewing the equilibrium attacker population size under the benchmark, aBM , as a function

of κ and implicitly differentiating (C.21) with respect to κ, then a′BM (κ) is given by

a′BM (κ) =
αρa(κ)q(a(κ))(αq(a(κ))− 1)

(αq(a(κ))− 1) (αρ(κ+ cp)q(a(κ)) + ατa(κ)2(αq(a(κ))− 1)− cpρ) + ακρa(κ)q′(a(κ))
,

(C.35)

where the subscripts “BM” for aBM (κ) will be left off to keep the notation simpler. For sufficiently

small κ (i.e., taking a Taylor series expansion around κ = 0), this can be written as

a′(κ) = − a(0)αρq(a(0))

(1− αq(a(0))) (a(0)2ατ + cpρ)
+O(κ), (C.36)
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where a(0) is what a∗ (for the benchmark case) approaches as κ → 0. Since 1 − αq(a) > 0 holds

for any κ from vu > 0 in equilibrium (recall vu = κ
1−αq(a)), it follows that a

′(κ) < 0 for sufficiently

small κ for the benchmark scenario.

Under the ransomware scenario when τ > τ̂ (so that there is only one attacker segment in

equilibrium), the attacker population size is given in (C.25). Viewing the equilibrium a as a

function of κ and implicitly differentiating (C.25) with respect to κ, then a′(κ) is given by

a′(κ) =

(
α(δ−1)(δ+1)2ρ̃a(κ)q(a(κ))3(αq(a(κ))−1)

)(
−q(a(κ))3

(
2αa(κ)

(
α(δ−1)(δ+1)2τ(ω+1)a(κ)+

δ2ρ̃2q′(a(κ))
)
+ α(δ − 1)ρ̃

(
κ(δ + 1)2 + 4cpδ

)
+ α2c2p(δ − 1)2 + δ2ρ̃2

)
+ q(a(κ))2

(
a(κ)q′(a(κ))

(
ρ̃×(

ακ(δ−1)(δ+1)2+δ2ρ̃

)
−α2c2p(δ−1)2

)
+(δ−1)

(
α(δ+1)2τ(ω+1)a(κ)2+2cp(αcp(δ−1)+δρ̃)

))
+

c2p(δ−1)2q(a(κ))

(
2αa(κ)q′(a(κ))−1

)
−c2p(δ−1)2a(κ)q′(a(κ))+αq(a(κ))4

(
αa(κ)

(
α(δ−1)(δ+1)2τ×

(ω + 1)a(κ) + δ2ρ̃2q′(a(κ))
)
+ ρ̃

(
α(δ − 1)

(
κ(δ + 1)2 + 2cpδ

)
+ 2δ2ρ̃

))
− α2δ2ρ̃2q(a(κ))5

)−1

,

(C.37)

where the a′(κ) and a(κ) above are interpreted to be for the ransomware case (not to be confused

with the same notation used for the benchmark case). Taking the limit as κ → 0 and δ → 0, we

see that for sufficiently small κ and δ, this can be expressed as

a′(κ) =
a(0)αρ̃q(a(0))3

(αq(a(0))− 1)
(
a(0)c2pq

′(a(0)) + q(a(0))
(
a(0)2ατ(ω + 1)q(a(0)) + c2p

)) + O(κ + δ),

(C.38)

where a(0) is what a∗ (for the ransomware case) approaches as κ → 0. The numerator is positive.

Since 1− αq(a) > 0 holds from vu > 0, it follows that αq(a(0))− 1 < 0 so that the denominator is

negative. Altogether, this means that a′(κ) < 0 for sufficiently small κ and δ for the ransomware

scenario when τ > τ̂ . �

Proof of Proposition 1: i) For the benchmark scenario, the attacker population size is given by
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(C.21). Viewing a as a function of τ and implicitly differentiating with respect to τ , we have that

a′(τ) = −
(
αa(τ)3(αq(a(τ))− 1)2

)(
(αq(a(τ))− 1)

(
αρ(κ+ cp)q(a(τ))+ατa(τ)2(αq(a(τ))− 1)−

cpρ

)
+ ακρa(τ)q′(a(τ))

)−1

. (C.39)

Let a0,BM be the unique positive solution to (C.21) when κ is 0. Specifically, a0,BM is the

unique positive solution to a2τ =
cpρ
αa . This has a unique solution since the left-hand side is strictly

increasing in a while the right-hand side is strictly decreasing in a (the existence of the solution

comes from the focal region conditions).

Let a0,BM (τ) denote a0,BM as a function of τ . For sufficiently small κ, (C.39) can be written in

the following way (i.e., taking a Taylor series approximation of (C.39) around κ = 0, we can write

(C.39) as follows):

a′(τ) = − αa(τ)3

cpρ+ ατa(τ)2
+O(κ). (C.40)

This is negative for sufficiently small κ, so the attacker population size decreases under the

benchmark scenario when 0<vu<vp< 1 arises.

ii) For the ransomware scenario, let τ̂ be the lower τ bound of the scenario with one attacker

segment (i.e., one in which all attackers who enter the market conduct ransomware attacks). For

τ ∈ (τ̂ , τ̄), the consumer equilibrium outcome is 0<vu<vr <vp< 1 and all attackers who enter

conduct ransomware attacks in equilibrium (characterized by Subsection C.3.1).

The equilibrium attacker population size is given in (C.25). Viewing a as a function of τ and
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implicitly differentiating with respect to τ , we have that

a′(τ) = −
(
(δ + 1)3(ω + 1)a(τ)3(α− αδ)q(a(τ))2(αq(a(τ))− 1)2

)
(
(δ+1)a(τ)q′(a(τ))

(
q(a(τ))

(
(q(a(τ))

(
αδ2ρ̃2q(a(τ))(2−αq(a(τ)))+ρ̃

(
δ2(−ρ̃)−ακ(δ−1)(δ+1)2

)
+

α2c2p(δ−1)2
)
−2αc2p(δ−1)2

)
+c2p(δ−1)2

)
+α2(−κ)(δ−1)(δ+1)3ρ̃q(a(τ))4+ακ(δ−1)(δ+1)3ρ̃q(a(τ))3+

2δq(a(τ))(αq(a(τ))−1)2(δρ̃q(a(τ))+cp(−δ)+cp)
2−(δ+1)q(a(τ))(αq(a(τ))−1)2(δρ̃q(a(τ))+cp(−δ)+

cp)
2 + 2q(a(τ))(αq(a(τ))− 1)2(δρ̃q(a(τ)) + cp(−δ) + cp)

2 − α(δ − 1)(δ + 1)3τ(ω + 1)a(τ)2×

q(a(τ))2(αq(a(τ))− 1)2

)−1

. (C.41)

Let a0 be the unique positive solution to (C.25) when κ and δ are both 0. Specifically, a0 is the

unique positive solution to a2τ(1 + ω) =
c2p

αq(a) . This has a unique solution since the left-hand side

is strictly increasing in a while the right-hand side is strictly decreasing in a (the existence of the

solution comes from the focal region conditions).

Let a0(τ) denote a0 as a function of τ . For sufficiently small κ and δ, (C.41) can be written in

the following way (i.e., taking a Taylor series approximation of (C.41) around κ = 0 and δ = 0, we

can write (C.41) as follows):

a′(τ) = − α(ω + 1)a0(τ)
3q(a0(τ))

2

c2pa0(τ)q
′(a0(τ)) + q(a0(τ))

(
ατ(ω + 1)a0(τ)2q(a0(τ)) + c2p

) +O(κ+ δ). (C.42)

This is negative for sufficiently small κ and δ, so the attacker population size decreases in τ for

τ ∈ (τ̂ , τ̄).

For the lower range of τ , we show that d
dτ [a1 + a2] < 0 at the smaller τ boundary defining

the case (i.e., τ) for sufficiently small κ and δ. Viewing a1 and a2 as functions of τ , implicitly

differentiating (C.30) and (C.31), solving for d
dτ [a1] and

d
dτ [a2], evaluating this at τ = τ and noting

that a1(τ) = q−1
(
cp(1−δ)

ρ̃

)
and a2(τ) = 0, we have d

dτ [a1 + a2]|τ=τ = −αSq−1
(

cp
ρ̃

)3

2cpρ̃
+O(κ+ δ). By

continuity, d
dτ [a1 + a2] < 0 also holds for some right-sided neighborhood around τ , so the attacker

population size shrinks for low τ in this case.

On the other hand, to show that there is an intermediate range of τ for which d
dτ [a1 + a2] >

0, we show that d
dτ [a1 + a2] > 0 at the larger τ boundary defining the two attacker segment

range of τ (i.e., τ̂) for sufficiently small κ and δ. Viewing a1 and a2 as functions of τ , implicitly

A.21



differentiating (C.30) and (C.31), solving for d
dτ [a1] and d

dτ [a2], evaluating this at τ = τ̂ and

noting that a1(τ̂) = 0 and a2(τ̂) = q−1

(
cp(1+ω−

√
ω(ω+1))

ρ̃ω+ρ̃

)
+O(κ+ δ), we have d

dτ [a1 + a2]|τ=τ̂ =

α
(
3
√

ω(ω+1)+ω
(
−4ω+4

√
ω(ω+1)−5

)
−1

)
q−1

(
cpω−cp

√
ω(ω+1)+cp

ρ̃ω+ρ̃

)3

ρ̃

(
ρ̃
(
−3ω+

√
ω(ω+1)−3

)
q−1

(
cpω−cp

√
ω(ω+1)+cp

ρ̃ω+ρ̃

)
q′
(
q−1

(
cpω−cp

√
ω(ω+1)+cp

ρ̃ω+ρ̃

))
+2cp

(
2ω−2

√
ω(ω+1)+1

)) +

O(κ+ δ). Comparing this expression to 0, we want to show

q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)
q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

))
>

2cp

(
−2ω + 2

√
ω(ω + 1)− 1

)
ρ̃
(
−3ω +

√
ω(ω + 1)− 3

) (C.43)

in order for d
dτ [a1 + a2]|τ=τ̂ > 0. Letting y =

cp(1+ω−
√

ω(ω+1))

ρ̃ω+ρ̃ , we want to find a condition

so that q−1(y)q′(q−1(y))
y > 1

3
2
+ω+

√
ω(1+ω)

. Define the function H(y) = q−1(y)q′(q−1(y))
y . We will show

that H(y) is a decreasing function of y. Note that H ′(y) < 0 is equivalent to q′′
(
q−1(y)

)
<

q′
(
q−1(y)

)( q′(q−1(y))
y − 1

q−1(y)

)
. Make a substitution of x = q−1(y), so that H(y) decreasing in

y is equivalent to showing q′′(x) < q′(x)
(
q′(x)
q(x) − 1

x

)
. This in turn is implied by the elasticity

assumption on q, namely that d
dx

[
q′(x)
q(x)
x

]
< 0 for all x. So altogether, H(y) is a decreasing function

of y.

Then q−1(y)q′(q−1(y))
y > 1

3
2
+ω+

√
ω(1+ω)

can be written as H(y) > 1
3
2
+ω+

√
ω(1+ω)

. Since H(y)

is a decreasing function, this is equivalent to y < H−1

(
1

3
2
+ω+

√
ω(1+ω)

)
. Substituting back in

y =
cp(1+ω−

√
ω(ω+1))

ρ̃ω+ρ̃ , we want a condition so that
cp(1+ω−

√
ω(ω+1))

ρ̃ω+ρ̃ < H−1

(
1

3
2
+ω+

√
ω(1+ω)

)
. This

can be written as
cp
ρ̃ <

(
1 + ω +

√
ω(ω + 1)

)
H−1

(
1

ω+
√

ω(ω+1)+ 3
2

)
. The derivative of the right-

hand side with respect to ω is given by

(
2ω+1

2
√

ω(ω+1)
+ 1

)(
H−1

(
1

ω+
√

ω(ω+1)+ 3
2

)
−

ω+
√

ω(ω+1)+1(
ω+

√
ω(ω+1)+ 3

2

)2
H′

(
H−1

(
1

ω+
√

ω(ω+1)+3
2

))
)
, which is altogether positive since H being a decreasing

function means that H ′
(
H−1

(
1

ω+
√

ω(ω+1)+ 3
2

))
< 0.

Define the function G(ω) =
(
1 + ω +

√
ω(ω + 1)

)
H−1

(
1

ω+
√

ω(ω+1)+ 3
2

)
. Since G(ω) is increas-

ing in ω, we can write the needed condition as ω > ω̂ where ω̂ = G−1
(
cp
ρ̃

)
. With this condition, we

have that d
dτ [a1 + a2]|τ=τ̂ > 0. By continuity of the derivative, this condition ω > ω̂ implies that the

attacker population size is increasing in some left-neighborhood of τ̂ for sufficiently small κ and δ. �
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Proof of Proposition 2: Recall again that τ̂ is defined to be the lower τ bound of the scenario

with one attacker segment (i.e., one in which all attackers who enter the market conduct ransomware

attacks). For τ ∈ (τ̂ , τ̄), the consumer equilibrium outcome is 0<vu<vr <vp< 1 and all attackers

who enter conduct ransomware attacks in equilibrium (characterized by Subsection C.3.1). From

Proposition 1, we have that the attacker population size shrinks in τ when this market outcome

arises.

For the ransom-paying population size (i.e., the size of the population willing to pay ransom

if hit), in this scenario, that is defined to be r(σ∗) = vp − vr. We have the equilibrium vp and vr

thresholds in (C.26) and (C.28), respectively. Simplifying, vp − vr =
cp(1−δ)−ρ̃q(a)
α(1−δ2)q(a)

. Viewing a as a

function of τ and differentiating this, we have d
dτ [vp − vr] = − cpa′(τ)q′(a(τ))

α(1+δ)q(a(τ))2
. For sufficiently small

k and δ, we showed earlier that a′(τ) < 0. Since all the other factors are positive, it follows that

d
dτ [vp − vr] > 0 for sufficiently small κ and δ.

For the equilibrium ransom charged, that is (C.24). Viewing a as a function of τ and differenti-

ating (C.24) with respect to τ , we have that dR∗
dτ = − cp(1−δ)a′(τ)q′(a(τ))

(1+δ)q(a(τ))2
. For sufficiently small k and

δ, we showed earlier that a′(τ) < 0. Since all the other factors are positive, it follows that dR∗
dτ > 0

for sufficiently small κ and δ.

Lastly, the expected total ransom paid is T = q(a∗)R∗r(σ∗). Using vp − vr =
cp(1−δ)−ρ̃q(a)
α(1−δ2)q(a)

from

earlier for r(σ∗) and (C.24) for the equilibrium ransom charged, we can express T as

T =
(cp(1− δ)− ρ̃q(a))(δρ̃q(a) + cp(1− δ))

α(1− δ)(1 + δ)2q(a)
. (C.44)

Viewing a as a function of τ and differentiating this with respect to τ , we have

dT

dτ
= −a′(τ)q′(a(τ))

(
δρ̃2q(a(τ))2 + c2p(1− δ)2

)
α(1− δ)(1 + δ)2q(a(τ))2

. (C.45)

For sufficiently small k and δ, we showed earlier that a′(τ) < 0. Since all the other factors are

positive, it follows that dT
dτ > 0 for sufficiently small κ and δ. �

Proof of Proposition 3: Under the benchmark scenario, the attacker’s profit function is given

in (C.20). Viewing a as a function of τ and differentiating with respect to τ , the derivative of the
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profit function is given below:

d

dτ
[ΠBM ] =

ρa′(τ) (−((αq(a(τ))− 1)(α(κ+ cp)q(a(τ))− cp))− ακa(τ)q′(a(τ)))
αa(τ)2(αq(a(τ))− 1)2

− (1− θ) (C.46)

From (C.21), we can differentiate this with respect to τ to find a′(τ). For sufficiently small k

(i.e., κ close enough to 0), this can be written as

a′(τ) = − αa(τ)3

cpρ+ ατa(τ)2
+O(κ). (C.47)

Substituting this back into (C.46), for sufficiently small κ, we have

d

dτ
[ΠBM ] =

cpρa(τ)

cpρ+ ατa(τ)2
− (1− θ) +O(κ). (C.48)

For θ close to 1, this is positive for sufficiently small κ. On the other hand, for θ close to the

marginal type θ = 1− a(τ), (C.48) becomes − ατa(τ)3

cpρ+ατa(τ)2
+O(κ), which is negative for sufficiently

small κ. Altogether, for the benchmark scenario, this shows that the higher skilled attacker have

profits that increase in τ , whereas the less-skilled attacker who enter the market have equilibrium

profits that decrease in τ .

The analysis above can be done for the ransomware scenario, substituting in (C.6) into (C.3)

(using λ(θ) = 1 and s(θ) = 1 for all θ) and taking the derivative with respect to τ . The algebra is

omitted for brevity. �

Proof of Proposition 4: For the benchmark case, welfare is

∫ vp

vu

(v−κ− q(a∗)(αv)) dv+
∫ 1

vp

(v−
κ− cp) dv, where a

∗ here is the attacker population for the benchmark case. Substituting in (C.22)

for vp and (C.23) for vu, the welfare can then be expressed as

WBM =
1

2

(
c2p

αq(a∗)
+ κ

(
κ

1− αq(a∗)
− 2

)
− 2cp + 1

)
. (C.49)

Viewing the attacker population size a∗ as a function of τ (recall again that a∗ solves (C.21))

and differentiating (C.49) with respect to τ , we have that

d

dτ
[WBM ] =

q′(a∗)
(

α2κ2

(αq(a∗)−1)2
− c2p

q(a∗)2

)
2α

. (C.50)
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For sufficiently small κ, this can be written as

d

dτ
[WBM ] = − c2pq

′(a∗)

2α (q(a∗))2
+O(κ). (C.51)

Since the zero-order term from (C.51) is negative, it follows that d
dτ [WBM ] < 0 for sufficiently

small κ.

For the ransomware case, first consider τ > τ̂ , where τ̂ is the τ boundary when the attacker

market segmentation changes between two segments of attackers and one segment of attackers.

Whether there is one segment or two segments of attackers in equilibrium, the welfare expression

looks the same:

WRW =

∫ vr

vu

(v−κ− q(a∗)(αv)) dv+
∫ vp

vr

(v−κ− q(a∗)(R∗+ δαv)) dv+

∫ 1

vp

(v−κ− cp) dv, (C.52)

where a∗ is interpreted as the total size of the attacker population under the ransomware case.

When one attacker segment arises in equilibrium (i.e., for τ > τ̂), then we can substitute (C.24)

for R, (C.26) for vp, (C.28) for vr, and (C.27) for vn into (C.52), resulting in

WRW =
1

2

(
c2p(δ − 1)(3δ + 1)− δρ̃2q(a∗)2

α(δ − 1)(δ + 1)2q(a∗)
+ κ

(
κ

1− αq(a∗)
− 2

)
+ cp

(
− 2δρ̃

α(δ + 1)2
− 2

)
+ 1

)
.

(C.53)

Viewing a∗ as a function of τ , differentiating with respect to τ , and looking at the asymptotic

expansion around κ = 0 and δ = 0, we have that

d

τ
[WRW ] = −c2pa

′
0(τ)q

′(a0(τ))
2αq(a0(τ))2

+O(κ+ δ), (C.54)

where a0(τ) comes from the proof of Proposition 1. Since a′0(τ) < 0, it follows that d
dτ [WRW ] > 0

for sufficiently small κ and δ when τ > τ̂ .

On the other hand, consider τ < τ̂ . We will show that for low enough τ , (i.e., τ close to τ),

welfare increases in τ , while when τ is close to τ̂ , then welfare can actually decrease in τ . In both

of these cases, the expression for welfare when there are both segments of attackers is given by:

WRW =

∫ 1

vp

(v−cp−κ) dv+

∫ vp

vr

(
v − q(a∗1 + a∗2)

(
a∗2

a∗1 + a∗2
(R∗ + αδv) +

a∗1
a∗1 + a∗2

(αv)

)
− κ

)
dv+∫ vr

vu

(v − q(a∗1 + a∗2)(αv)− κ) dv, (C.55)
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where a∗1 and a∗2 solve (C.30) and (C.31), R∗ comes from (C.29), and vp, vr, and vu come from

(C.32), (C.34), and (C.33), respectively. Substituting these expressions in, we have that welfare in

this case can be written as:

WRW =

(
q(a∗1+a∗2)

(
(δ−1)

(
4(a∗1)

2α

(
cp(cp+2)−(κ−1)2

)
+a∗1a

∗
2

(
α

(
c2p(3δ+5)+8cp(δ+1)−4(δ+1)(κ−1)2

)
+

2cpρ̃

)
+(a∗2)

2

(
α

(
c2p(3δ+1)+2cp(δ+1)2− (δ+1)2(κ− 1)2

)
+2cpδρ̃

))
+ q(a∗1+a∗2)

(
−α2(δ− 1)

(2cp+2κ−1)(2a∗1+a∗2δ+a∗2)
2−2a∗2αcp(δ−1)ρ̃(a∗1+a∗2δ)+a∗2ρ̃

2(a∗1+a∗2δ)−a∗2αρ̃
2(a∗1+a∗2δ)q(a

∗
1+a∗2)

))
−

c2p(δ− 1)(a∗1 + a∗2)(4a
∗
1 +3a∗2δ+ a∗2)

)(
2α(δ− 1)(2a∗1 + a∗2δ+ a∗2)

2q(a∗1 + a∗2)(αq(a
∗
1 + a∗2)− 1)

)−1

.

(C.56)

Viewing a∗1 and a∗2 as functions of τ , differentiating, substituting in τ = τ , a1(τ) = q−1
(
cp(1−δ)

ρ̃

)
and a2(τ) = 0, and getting the asymptotic expansion of this expression around κ = 0 and δ = 0,

we have that

d

dτ
[WRW ]|τ=τ = −

ρ̃2q′
(
q−1

(
cp
ρ̃

))(
a′1

(
cpρ̃

αq−1
(

cp
ρ̃

)2

)
+ a′2

(
cpρ̃

αq−1
(

cp
ρ̃

)2

))

2α
+O(κ+ δ). (C.57)

To find a′1

(
cpρ̃

αq−1
(

cp
ρ̃

)2

)
and a′2

(
cpρ̃

αq−1
(

cp
ρ̃

)2

)
, note again that a∗1 and a∗2 together solve (C.30)

and (C.31). Implicitly differentiating that system of equations, using a1(τ) = q−1
(
cp(1−δ)

ρ̃

)
and

a2(τ) = 0, τ = τ , and taking the asymptotic expansion of the expressions around κ = 0 and δ = 0,

we have

a′1

⎛
⎜⎝ cpρ̃

αq−1
(
cp
ρ̃

)2

⎞
⎟⎠ = −

αq−1
(
cp
ρ̃

)3

2cpρ̃
+O(κ+ δ) (C.58)

and

a′2

⎛
⎜⎝ cpρ̃

αq−1
(
cp
ρ̃

)2

⎞
⎟⎠ = O(κ+ δ). (C.59)
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Substituting (C.58) and (C.59) into (C.57), we have

d

dτ
[WRW ]|τ=τ =

ρ̃q−1
(
cp
ρ̃

)3
q′
(
q−1

(
cp
ρ̃

))
4cp

+O(κ+ δ). (C.60)

This is positive, so for sufficiently small κ and δ, d
dτ [WRW ]|τ=τ > 0. By continuity, there is

some right-neighborhood around τ for which welfare increases in τ .

Lastly, for τ close to τ̂ =
cpρ̃

α
(
ω−

√
ω(ω+1)+1

)
q−1

(
cpω−cp

√
ω(ω+1)+cp

ρ̃ω+ρ̃

)2 +O(κ+δ), when both segments

of attackers are in the market, we will show that welfare can be decreasing in τ . Equations (C.55)

and (C.56) still apply here, since we are still in the market structure with two attacker segments.

Viewing a∗1 and a∗2 as functions of τ , differentiating, substituting in τ = τ̂ , a1(τ̂) = 0 and

a2(τ̂) = q−1

(
cp(1+ω−

√
ω(1+ω))

ρ̃(1+ω)

)
, and getting the asymptotic expansion of this expression around

κ = 0 and δ = 0, we have that

d

dτ
[WRW ]|τ=τ̂ =

(
ρ̃

(cpω

(
ω −√

ω(ω + 1) + 1

)
a′1(τ̂)

q−1

(
cpω−cp

√
ω(ω+1)+cp

ρ̃ω+ρ̃

) −

ρ̃(ω + 1)2q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

))(
a′1(τ̂)+

a′2(τ̂)

)))(
2α

(
ω −

√
ω(ω + 1) + 1

)2)−1

+O(κ+ δ). (C.61)

To find a′1(τ̂) and a′2(τ̂), note again that a∗1 and a∗2 together solve (C.30) and (C.31). Implicitly

differentiating that system of equations, using a1(τ̂) = 0 and a2(τ̂) =, τ = τ̂ , and taking the
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asymptotic expansion of these derivative expressions around κ = 0 and δ = 0, we have

a′1(τ̂) = (
2α(ω + 1)2

(√
ω(ω + 1)− ω

)
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)4

q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)))(
cpω

(
ρ̃

(
− 3ω +

√
ω(ω + 1)− 3

)

q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)
q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

))
+

2cp

(
2ω − 2

√
ω(ω + 1) + 1

)))−1

+O(κ+ δ) (C.62)

and

a′2(τ̂) = (
α

(
− ω +

√
ω(ω + 1)− 1

)
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)3

(
2ρ̃

√
ω(ω + 1)3q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)
q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

))
+

cpω

(
2ω−2

√
ω(ω + 1)+1

)))(
cpρ̃ω

(
ρ̃

(
−3ω+

√
ω(ω + 1)−3

)
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)

q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

))
+ 2cp

(
2ω − 2

√
ω(ω + 1) + 1

)))−1

+O(κ+ δ). (C.63)

Substituting (C.62) and (C.63) into (C.61) and simplifying, we have

d

dτ
[WRW ]|τ=τ̂ =

(
ρ̃(ω + 1)2

(
−
√

ω3(ω + 1) + ω2 + ω
)
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)3

×

q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)))(
2ω

(
ω −

√
ω(ω + 1) + 1

)2×
(
ρ̃
(
−3ω +

√
ω(ω + 1)− 3

)
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

)
q′
(
q−1

(
cpω − cp

√
ω(ω + 1) + cp

ρ̃ω + ρ̃

))
+

2cp

(
2ω − 2

√
ω(ω + 1) + 1

)))−1

+O(κ+ δ). (C.64)
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The zero-order term of this asymptotic expression being negative is equivalent to (C.43). Fol-

lowing the same argument as in the end of the proof of Proposition 1, it follows that if ω> ω̂,

then d
dτ [WRW ]|τ=τ̂ < 0 for sufficiently small κ and δ. Consequently, for sufficiently small κ and δ,

welfare decreases in a left-neighborhood of τ = τ̂ by continuity of d
dτ [WRW ]. �

Proof of Proposition 5: The expression for welfare in the benchmark case is given in (C.49). The

equation defining a∗ is given by (C.21). For ease of reference, these two expressions are provided

below:

aτ =
cpρ

aα
− κρq(a)

a− aαq(a)
and (C.65)

WBM =
1

2

(
c2p

αq(a∗)
+ κ

(
κ

1− αq(a∗)
− 2

)
− 2cp + 1

)
. (C.66)

For sufficiently small κ, by taking a Taylor series expansion around κ = 0 in (C.65) and solving

for a, the asymptotic expression for a∗BM is given by

a∗BM =

√
cpρ

ατ
+O(κ). (C.67)

Substituting this into (C.66) and taking a Taylor series expansion around κ = 0 again, the

asymptotic expression for WBM is given by

WBM =
1

2

⎛
⎜⎝1− 2cp +

c2p

αq
(√

cpρ
ατ

)
⎞
⎟⎠+O(κ). (C.68)

On the other hand, for the ransomware case when τ < τ̂ (i.e., when there are two segments of

attackers), then the welfare expression is given in (C.56). For ease of reference, this is provided
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below:

WRW =

(
q(a∗1+a∗2)

(
(δ−1)

(
4(a∗1)

2α

(
cp(cp+2)−(κ−1)2

)
+a∗1a

∗
2

(
α

(
c2p(3δ+5)+8cp(δ+1)−4(δ+1)(κ−1)2

)
+

2cpρ̃

)
+(a∗2)

2

(
α

(
c2p(3δ+1)+2cp(δ+1)2− (δ+1)2(κ− 1)2

)
+2cpδρ̃

))
+ q(a∗1+a∗2)

(
−α2(δ− 1)

(2cp+2κ−1)(2a∗1+a∗2δ+a∗2)
2−2a∗2αcp(δ−1)ρ̃(a∗1+a∗2δ)+a∗2ρ̃

2(a∗1+a∗2δ)−a∗2αρ̃
2(a∗1+a∗2δ)q(a

∗
1+a∗2)

))
−

c2p(δ− 1)(a∗1 + a∗2)(4a
∗
1 +3a∗2δ+ a∗2)

)(
2α(δ− 1)(2a∗1 + a∗2δ+ a∗2)

2q(a∗1 + a∗2)(αq(a
∗
1 + a∗2)− 1)

)−1

.

(C.69)

Recalling at the lower τ boundary τ that we have a∗2 = 0 and a∗1 = q−1
(
cp(1−δ)

ρ

)
. Substituting

these two into (C.69) and taking an asymptotic expansion of welfare for sufficiently small κ and δ,

we have

WRW |τ=τ =
1

2

(
cp

(
ρ̃

α
− 2

)
+ 1

)
. (C.70)

Recall again that τ is given as

τ =
cpρ̃(α(δ − 1)(cp + κ) + ρ̃)

α(αcp(δ − 1) + ρ̃)q−1
(
cp−cpδ

ρ̃

)2 (C.71)

Substituting this into (C.68) and taking an asymptotic expansion around κ = 0, we have

WBM |τ=τ =
1

2

⎛
⎜⎝1− 2cp +

c2p

αq
(√

ρ
ρ̃q

−1
(
cp
ρ̃

))
⎞
⎟⎠+O(κ). (C.72)

Comparing this to (C.70), we see that for sufficiently low κ and δ, WRW |τ=τ > WBM |τ=τ if

and only if ρ̃ < ρ. By continuity of welfare in τ , if ρ̃ < ρ, then WRW > WBM holds in some

right-neighborhood of τ for sufficiently small κ and δ.

On the other side of the τ range, namely when τ = τ̄ , the equilibrium outcome under ransomware

has all attackers who enter the market conducting ransomware. In this case, the welfare expression
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is given by (C.53), provided here for easy reference:

WRW =
1

2

(
c2p(δ − 1)(3δ + 1)− δρ̃2q(a∗)2

α(δ − 1)(δ + 1)2q(a∗)
+ κ

(
κ

1− αq(a∗)
− 2

)
+ cp

(
− 2δρ̃

α(δ + 1)2
− 2

)
+ 1

)
.

(C.73)

Taking asymptotics for sufficiently small κ and δ, we can write the asymptotic expansion as

WRW =
1

2

(
1− 2cp +

c2p
αq(a)

)
+O(κ+ δ). (C.74)

Recall again that for the benchmark case, the asymptotic welfare expression is given by (C.68).

To find the τ at which these welfare expressions cross, we can equate their zero-order terms:

1

2

(
1− 2cp +

c2p
αq(a)

)
=

1

2

⎛
⎜⎝1− 2cp +

c2p

αq
(√

cpρ
ατ

)
⎞
⎟⎠ . (C.75)

This is equivalent to a =
√

cpρ
ατ , where a is for attacker population size when all attackers are

in the market are ransomware attackers, which is given in (C.25). For sufficiently small κ and δ,

the solution of (C.25) converges to the solution of

aτ(1 + ω) =
c2p

aαq(a)
. (C.76)

Then the τ for which a =
√

cpρ
ατ holds can be found by substituting in a =

√
cpρ
ατ into (C.76). This

is equivalent to solving in τ the equation:

τ

√
cpρ

ατ

⎛
⎜⎝− cp

ρq
(√

cpρ
ατ

) + ω + 1

⎞
⎟⎠ = 0. (C.77)

This has a unique solution in τ for τ > 0 given by τ =
cpρ

α
(
q−1

(
cp

ρω+ρ

))2 . Then the τ at which

WBM and WRW cross is given by τ̂ =
cpρ

α
(
q−1

(
cp

ρω+ρ

))2 +O(κ+ δ).

To find a condition when WBM > WRW by τ = τ̄ (the upper bound of the focal range of τ), we

just need τ̂ < τ̄ . Recall again that τ̄ =
cp(α+ρ̃)

2α(ω+1)q−1
(

2cp
α+ρ̃

)2 +O(κ+ δ).
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Comparing the zero-order terms, we want to find a condition so that:

cpρ

αq−1
(

cp
ρω+ρ

)2 <
cp(α+ ρ̃)

2α(ω + 1)q−1
(

2cp
α+ρ̃

)2 . (C.78)

Rearranging, this becomes

ρ(ω + 1)

cpq−1
(

cp
ρω+ρ

)2 <
α+ ρ̃

2cpq−1
(

2cp
α+ρ̃

)2 . (C.79)

Consider the function b(x) =
( 1
x)

(q−1(x))2
. The derivative of this function is b′(x) = −

q−1(x)+ 2x
q′(q−1(x))

x2q−1(x)3
,

which is negative for all x > 0. So then for (C.79) to hold, a necessary and sufficient condition is

cp
ρ(1+ω) >

2cp
α+ρ̃ . Rearranging, this means that for sufficiently small κ and δ, WBM > WRW at τ = τ̄

if and only if ρ̃ > −α+ 2ρ(1 + ω).

Comparing the two bounds on ρ̃, note that ρ > −α+ 2ρ(1 + ω) if α > ρ and ω < α−ρ
2ρ .

Suppose that α > ρ and ω < α−ρ
2ρ so that ρ > −α+ 2ρ(1 + ω). Given that for sufficiently small

κ and δ, WBM > WRW at τ = τ̄ if and only if ρ̃ > −α + 2ρ(1 + ω) and WRW > WBM holds in

some right-neighborhood of τ for sufficiently small κ and δ, this then splits into three sub-cases. If

ρ̃ < −α+2ρ(1+ω), then WRW > WBM at both the upper and lower τ bounds. In an intermediate

range of ρ̃ (i.e., −α + 2ρ(1 + ω) < ρ̃ < ρ), we have that WRW > WBM at the lower τ bound, but

WRW < WBM at the upper τ bound. When ρ̃ > ρ, then WRW < WBM at both τ bounds.

On the other hand, suppose ω > α−ρ
2ρ . Then ρ < −α + 2ρ(1 + ω). Note that if ω > α−ρ

2ρ

holds under the focal region, then since ω< (α−ρ)2

4αρ̃ , it follows that (α−ρ)2

4αρ̃ > α−ρ
2ρ holds. This is

equivalent to ρ > 2α2ρ̃
α2+ρ̃2

. This implies that ρ̃ < ρ since otherwise, ρ̃ > 2α2ρ̃
α2+ρ̃2

would hold, which is

equivalent to ρ̃ > α (violating a focal region condition). Consequently, if ω > α−ρ
2ρ holds in the focal

region, then ρ̃ < ρ holds as well, in which caseWRW > WBM at both τ bounds of the focal region. �

Proof of Proposition 6: The expression for welfare in the benchmark case is given in (C.49). The

equation defining a∗ is given by (C.21). For ease of reference, these two expressions are provided

below:

aτ =
cpρ

aα
− κρq(a)

a− aαq(a)
and (C.80)

WBM =
1

2

(
c2p

αq(a∗)
+ κ

(
κ

1− αq(a∗)
− 2

)
− 2cp + 1

)
. (C.81)
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Differentiating (C.81) with respect to α, we have that

d

dα
[WBM ] = −(αa′(α)q′(a(α)) + q(a(α)))

(
αq(a(α))

(
α(cp − κ)(cp + κ)q(a(α))− 2c2p

)
+ c2p

)
2α2q(a(α))2(αq(a(α))− 1)2

.

(C.82)

Taking a limit as κ → 0, we have that the asymptotic expression for this for sufficiently small

κ is given by
d

dα
[WBM ] =

c2p (αa
′(α)|κ=0q

′(a(α)|κ=0) + q(a(α)|κ=0))

2α2q(a(α)|κ=0)2
+O(κ). (C.83)

To simplify notation, we will drop the subscript with κ = 0, but note that a(α) and a′(α) in

the next few paragraphs refer to what these measures look like when κ = 0. Showing that (C.83)

is negative for sufficiently small κ is equivalent to showing that

αa′(α)q′(a(α)) + q(a(α)) > 0. (C.84)

Viewing a as a function of κ in (C.80), taking the derivative with respect to κ, and taking the

limit as κ → 0, we have that

a′(α) = − cpρa(α)

α2τa(α)2 + αcpρ
+O(κ). (C.85)

Substituting this into (C.84), we want to show:

q′(a(α)) <
q(a(α))

a(α)
+

ατa(α)q(a(α))

cpρ
. (C.86)

Note that the second term on the right-hand side is positive while q′(a(α)) < q(a(α))
a(α) can be

written as q′(a(α)) < q(a(α))−q(0)
a(α)−0 . This inequality holds since q(a) is increasing, concave with

q(0) = 0. Altogether, d
dα [WBM ] < 0 for sufficiently small κ.

Next, we show that for τ > τ̂ in the focal region, welfare decreases in α as well. In this range of

τ , the equilibrium outcome under ransomware has all attackers who enter the market conducting

ransomware. In this case, the welfare expression is given by (C.53), provided here for easy reference:

WRW =
1

2

(
c2p(δ − 1)(3δ + 1)− δρ̃2q(a∗)2

α(δ − 1)(δ + 1)2q(a∗)
+ κ

(
κ

1− αq(a∗)
− 2

)
+ cp

(
− 2δρ̃

α(δ + 1)2
− 2

)
+ 1

)
.

(C.87)

A.33



Taking asymptotics for sufficiently small κ and δ, we can write the asymptotic expansion as

WRW =
1

2

(
1− 2cp +

c2p
αq(a)

)
+O(κ+ δ). (C.88)

Viewing a as a function of α in (C.88), differentiating it with respect to α, and taking asymp-

totics in κ and δ, we have that

d

dα
[WRW ] = −c2p (αa

′(α)q′(a(α)) + q(a(α)))

2α2q(a(α))2
+O(κ+ δ). (C.89)

To show that this is negative for sufficiently small κ and δ is equivalent to showing that

q(a(α)) + αa′(α)q′(a(α)) > 0, (C.90)

where a(α) and a′(α) in the next few paragraphs refer to what these measures look like when κ = 0

and δ = 0.

Recall again that the attacker population size for ransomware in this case (i.e., when all attackers

in the market are ransomware attackers), which is given in (C.25). For sufficiently small κ and δ,

the solution of (C.25) converges to the solution of

aτ(1 + ω) =
c2p

aαq(a)
. (C.91)

Implicitly differentiating a with respect to α in (C.91) and taking asymptotics in κ and δ,

a′(α) = − c2pa(α)q(a(α))

αc2pa(α)q
′(a(α)) + αq(a(α))

(
ατ(ω + 1)a(α)2q(a(α)) + c2p

) +O(κ+ δ). (C.92)

Substituting this into (C.90), we want to show that the following holds:

c2pa(α)q
′(a(α)) + q(a(α))

(
ατ(ω + 1)a(α)2q(a(α)) + c2p

)
> 0. (C.93)

This is true. Therefore, d
dα [WRW ] < 0 for sufficiently small κ and δ.

Lastly, we will show that d
dδ [WRW ] > 0 for sufficiently small κ and δ when all attackers who

enter the market opt to conduct ransomware. The asymptotic expression for welfare is given in
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(C.88). Implicitly differentiating a with respect to δ and taking asymptotics in κ and δ, we have

d

dδ
[WRW ] = −c2pa

′(δ)q′(a(δ))
2αq(a(δ))2

+O(κ+ δ). (C.94)

Then to show that welfare is increasing in this asymptotic regime, it suffices to show that

a′(δ)< 0 for sufficiently small κ and δ. Recall again that the equation defining a in this case is

given by (C.25). For ease of reference, we repeat it here:

aτ(1 + ω) =
a(δρ̃q(a) + cp(1− δ))2

α(1− δ)(aδ + a)2q(a)
− κρ̃q(a)

a− aαq(a)
. (C.95)

Implicitly differentiating this with respect to δ and solving for a′(δ), we have

a′(δ) =

(
(δρ̃q(a(δ)) + cp(−δ) + cp)(((δ − 1)δ + 2)ρ̃q(a(δ))− cp(δ − 3)(δ − 1))

)
×

(
(δ − 1)2(δ + 1)3

(q′(a(δ))

(
ρ̃q(a(δ))2

(
ακ

(αq(a(δ))−1)2
+ δ2ρ̃

(δ−1)(δ+1)2

)
− c2p(δ−1)

(δ+1)2

)

q(a(δ))
+

(
q(a(δ))

(
ρ̃q(a(δ))

(
−αδ2ρ̃q(a(δ))+α(δ−1)

(
2cpδ+(δ+1)2κ

)
+δ2ρ̃

)
−cp(δ−1)(αcp(δ−1)+2δρ̃)

)
+

c2p(δ − 1)2

)(
(δ − 1)(δ + 1)2a(δ)(αq(a(δ))− 1)

)−1

+ ατ(ω + 1)a(δ)q(a(δ))

))−1

. (C.96)

Taking the limit as κ and δ approach 0, the asymptotic expression for this is

a′(δ) =
a(δ)|δ=0cpq(a(δ)|δ=0)(2ρ̃q(a(δ)|δ=0)− 3cp)

a(δ)|δ=0c2pq
′(a(δ)|δ=0) + q(a(δ)|δ=0)

(
a(δ)|2δ=0ατ(ω + 1)q(a(δ)|δ=0) + c2p

)+O(κ+δ) (C.97)

Then to show that a′(δ) < 0 for sufficiently small δ, this is equivalent to showing that 2ρ̃q(a(0))< 3cp.

Since q is invertible, this is equivalent to showing that a(0)>q−1
(
3cp
2ρ̃

)
. Given that a solves (C.91)

asymptotically and that the left-hand side of (C.91) is increasing in a while the right-hand side is

decreasing in a, we want to show that aτ(1 + ω) >
c2p

aαq(a) for a = q−1
(
3cp
2ρ̃

)
. This is equivalent to

showing that τ >
2cpρ̃

3α(1+ω)q(−1)
(

3cp
2ρ̃

)2 . To show that this holds under the focal region, we compare this

bound to the lower bound on τ ,
cpρ̃

α
(
q−1

(
cp
ρ̃

))2 . That
cpρ̃

α
(
q−1

(
cp
ρ̃

))2 >
2cpρ̃

3α(1+ω)q(−1)
(

3cp
2ρ̃

)2 is equivalent to

showing that ρ̃

cpq(−1)
(

cp
ρ̃

)2 > 2ρ̃

3cpq(−1)
(

3cp
2ρ̃

)2 . Note that d
dx

[ 1
x

(q−1(x))2

]
= −

q−1(x)+ 2x
q′(q−1(x))

x2q−1(x)3
< 0. Then
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showing ρ̃

cpq(−1)
(

cp
ρ̃

)2 > 2ρ̃

3cpq(−1)
(

3cp
2ρ̃

)2 holds is equivalent to showing
cp
ρ̃ <

3cp
2ρ̃ , which is true. Then

a′(δ) < 0 for sufficiently small κ and δ, which means d
dδ [WRW ] > 0 for sufficiently small κ and δ

from (C.94). �
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Appendix D:
Robustness Check for Generalized Model

In this appendix, we demonstrate how our insights from the main model are robust to the gen-

eralization of attacker heterogeneity at both entry cost and revenue levels (as per the generalized

model introduced in Appendix C.1).

When the attacker market structure consists exclusively of attackers entering with ransomware,

we derived in Appendix C.1.1 the equilibrium type-dependent ransom R∗(θ) as

R∗(θ) =
ρ̃λ(θ)

2s(θ)
+

(1− δ)
(
cp − q(a∗)

(∫ 1
1−a∗

ρ̃λ(ξ)
2a∗s(ξ) dξ

))
(1 + δ)q(a∗)

. (D.1)

where a∗ is the equilibrium attacker population size (suppressing Φ̃∗
RW for brevity). Similarly, when

the attacker market structure consists of two segments in equilibrium, those who enter with ran-

somware and those who enter with standard attacks, we derived in Apprendix C.1.2 the equilibrium

type-dependent R∗(θ) as

R∗(θ) =
ρ̃λ(θ)

2s(θ)
+

(1− δ)
(
cpa

∗ − a∗2q(a∗)
(∫ 1

1−a∗2
ρ̃λ(ξ)
2a∗2s(ξ)

dξ
))

(2a∗1 + a∗2δ + a∗2)q(a∗)
, (D.2)

where a∗1 is the equilibrium size of the attacker population entering with standard attacks, a∗2 is the

size of the attacker population entering with ransomware attacks, and a∗= a∗1 + a∗2.

Examining the expression for R∗(θ) in both cases and noting that only the first term depends

on θ, it follows that:

Proposition D.1 There exist bounds s̄, λ̄ > 0 such that if s′(θ)< s̄ and λ′(θ)< λ̄ for all θ∈Θ,

then R∗(·) is increasing (decreasing) if and only if λ(·)/s(·) is increasing (decreasing) on Θ.

Proof of Proposition D.1: Whether the equilibrium outcome has one attacker segment or two,

R(θ) is R(θ) = 1
2

(
ρ̃λ(θ)
s(θ)

)
+ C for some constant C (see (C.6) and (C.15)). Differentiating both

sides with respect to θ, it follows that dR(θ)
dθ > 0 if and only if d

dθ

(
λ(θ)
s(θ)

)
> 0. �

This establishes a monotonicity characterization of the equilibrium ransom strategy profile. For

illustration purposes, we utilize linear functional forms λ(θ)= 1− k1(1− θ) and s(θ)= 1− k2(1− θ)

with 0≤ k1, k2≤ 1. With respect to these specific functional forms, Proposition D.1 establishes that

R∗(·) is increasing when k1>k2 and decreasing when k1<k2, for k1 and k2 satisfying the bounds
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in Proposition D.1.

The main goal of this section is to illustrate how our insights from Sections 4 and 5 extend

into a world in which different attackers charge different ransoms. We first note that the analysis

in those sections can be thought of as a special case of the model in this section, with k1= k2=0

(more generally, with λ(θ)= 1 and s(θ)= 1 for all θ). For example, examining equations (D.1) and

(D.2), when λ(θ)= 1 and s(θ)= 1 for all θ, R∗(θ) would no longer depend on θ anymore in either

equation. A natural question is how would our main insights change when accounting for attacker

heterogeneity at the revenue level which, in turn, leads to different ransoms being charged.

In analyzing this model extension with different ransoms from different attackers, we will need

to understand what it means to be a consumer willing to pay ransom if hit. When different

attackers charge different ransoms, some consumers may decide to pay some ransoms charged

in equilibrium but not other ransoms that are too high for them. As discussed in Section 3.2,

Rmax(v)=αv(1 − δ) is the maximum ransom amount that a consumer of type v would be willing

to pay if hit with ransomware. Let ṽr now represent the consumer type who is only willing to

pay the lowest ransom charged in equilibrium, denoted R (among all the different ransoms charged

by attackers in equilibrium). In this case, ṽr =
R

α(1−δ) , which characterizes the marginal type who

is unpatched and indifferent between paying the minimum ransom charged and not paying any

ransom in equilibrium.

Next, consider consumers with valuations slightly higher than ṽr. When deciding to remain

unpatched, they risk being hit by an attacker who charges a ransom higher than their willingness

to pay (i.e., being hit with ransoms greater than vα(1 − δ) when v is close to ṽr). By (7), even

though they may pay some ransoms that are low enough from their perspective, if the ransom is

higher than their threshold, then they would opt to incur the full loss αv instead of paying ransom.

As v increases further, consumers are more and more willing to pay the higher ransoms charged

in equilibrium. At some point, there is a type willing to pay any ransom charged in equilibrium.

Denoting this type ṽs, then similarly ṽs=
R̄

α(1−δ) , where R̄ is the highest ransom charged by an

attacker in equilibrium. Consumers of type v ∈ (ṽr, ṽs) would only pay ransoms lower than their

threshold, but consumers with v≥ ṽs would be willing to pay any ransom charged in equilibrium

(said differently, R̄ ≤ Rmax(ṽs)). Consequently, consumers of valuations in v ∈ (ṽs, ṽp) would be

willing to pay any ransom charged by an attacker in equilibrium. Lastly, those with valuations

v≥ ṽp prefer to patch rather than be exposed to risk of a cyberattack. This patching threshold can

be written as either
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ṽp =
cp − q(a∗)

(∫ 1
1−a∗

R(θ)
a∗ dθ

)
αδq(a∗)

(D.3)

or

ṽp =
a∗

(
cp − q(a∗)

(∫ 1
1−a∗2

R(θ)
a∗ dθ

))
α(a∗1 + a∗2δ)q(a∗)

, (D.4)

when all attackers prefer to enter with ransomware, and when attackers segment between ran-

somware and standard attacks, respectively.

Going forward, we continue to assume that λ(·)/s(·) is strictly monotone on Θ to ensure that

R∗(θ) is invertible such that R∗−1(vα(1 − δ)) is well-defined for any v. In the case of the specific

linear functional form used above, this assumption is satisfied provided that either k1>k2 or k2>k1

are selected such that they satisfy k1< λ̄ and k2< s̄.

With this foundation, we can numerically explore the robustness of our results, examining

whether they extend to this more complex setting with attackers charging different ransoms. We

demonstrate robustness using k1 = 0.2 and k2 = 0.15 as an example of moderate attacker revenue

heterogeneity. We reproduce Figures 2 and 3 from our primary analysis using this extended frame-

work while retaining consistent parameter values in Figures D.1 and D.2, respectively. Because

ransoms are now type dependent, in panel (e) of Figure D.1, we plot the expected ransom over all at-

tacker types entering with ransomware, defined as Eθ[R
∗(θ; τ) | τ ] = 1

a∗

∫ 1

1−a∗
R∗(θ; τ)dθ (with R∗(θ)

coming from (D.1) when all attackers enter the market with ransomware) and Eθ[R
∗(θ; τ) | τ ] =

1

a∗2

∫ 1

1−a∗2
R∗(θ; τ)dθ (with R∗(θ) coming from (D.2) when attackers segment in their attack mode).

Also, in panel (a) of Figure D.1, the ransom-paying population reflects the consumers who are

willing to pay some of the ransoms being demanded. As long as they will pay the minimum ransom

demanded, they belong to this group. Overall, the added complexity of R∗(θ) allows us to capture

a richer consumer market structure. Despite the added complexity stemming from different attack-

ers charging different ransoms, in terms of the comparative analysis we do in the primary analysis,

Figures D.1 and D.2 illustrate that the insights remain robust.
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Figure D.1: The impact of attacker entry factor (τ) on equilibrium market outcomes under pre-
crypto benchmark and post-crypto ransomware settings with attacker heterogeneity in revenues.
The parameter values are: cp = 0.3, δ = 0.02, κ = 0.05, α = 2.8, ρ = 1.6, ρ̃ = 1.3, ω = 0.1,
q(a) = 0.9a− 0.4a2, λ(θ) = 1− 0.2(1− θ), and s(θ) = 1− 0.15(1− θ).
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Figure D.2: The impact of attacker entry factor (τ) on social welfare outcomes under pre-crypto
benchmark and post-crypto ransomware settings with attacker heterogeneity in revenues. The
parameter values are: cp = 0.3, δ = 0.02, κ = 0.05, α = 2.8, ρ = 1.6, ρ̃ = 1.3, ω = 0.1,
q(a) = 0.9a− 0.4a2, λ(θ) = 1− 0.2(1− θ), and s(θ) = 1− 0.15(1− θ).
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