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To answer the question of when are assets complementary, we investigate specific resource
combinations along the value chain, focusing on two mechanisms that are central to combining
resources for innovation in the pharmaceutical industry: recruitment and retention of star
scientists, and 2) engagement in strategic alliances. We propose that resource combinations
that focus on the same parts of the value chain are substitutes due to knowledge redundancies.
Conversely, we hypothesize that resource combinations that link different parts of the value
chain are complements due to integration of nonredundant knowledge. To test these hypotheses,
we empirically track the innovative performance of 108 global pharmaceutical firms over three
decades (1974–2003). Copyright  2011 John Wiley & Sons, Ltd.

INTRODUCTION

A growing body of research considers the question
of where a firm draws its boundaries (Parmigiani
and Mitchell, 2009; Williamson, 1991). Recently,
researchers have advanced a nuanced approach to
more accurately depict the complexity and veloc-
ity of today’s business environment (Parmigiani,
2007). This stream of research illustrates that it is
often the case that organizations choose to simul-
taneously or concurrently make, buy, or ally to
attain like inputs (Parmigiani and Mitchell, 2009;
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Rothaermel, Hitt, and Jobe, 2006). This litera-
ture discusses concurrent sourcing as an alternative
to the traditional dichotomy of make versus buy
boundary decisions. If indeed organizations are
using concurrent sourcing (referred to as tapered
integration or dual distribution of inputs in the
original literature, see Harrigan, 1986), the ques-
tion remains whether it is efficacious for them to
be doing so. More specifically, within the realm of
innovation, are organizations facilitating or ham-
pering their innovating efforts by leveraging dif-
ferent sources of knowledge concurrently?

We attempt to answer the question of when com-
binations of value chain activities are substitutive
or complementary by investigating the effect of
specific activity combinations on a firm’s inno-
vative performance. Specifically, we focus herein
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on the interactions between two mechanisms that
are central to innovation in the pharmaceutical
industry: the recruitment and retention of star sci-
entists, and 2) engagement in strategic alliances.
These two different mechanisms are representa-
tive of activities firms use to access knowledge
and build new capabilities (Cockburn and Hen-
derson, 2001; Ettlie and Pavlou, 2006; Gulati,
1998; Helfat, 1997; Helfat and Peteraf, 2003).
Although some of these mechanisms have been
studied in isolation (Gardner, 2005; Rothaermel,
2001; Zucker and Darby, 1997), there is a dearth
of research regarding the contingency effects of
these mechanisms on innovative performance.

We posit that strategic alliances and intellectual
human capital are used to access and combine dif-
ferent types of knowledge along the value chain.
While an upstream- downstream lens has been
applied to strategic alliances (Baum, Calabrese,
and Silverman, 2000; Koza and Lewin, 1998;
Rothaermel and Deeds, 2004), we suggest that it
can also be useful to better understand a firm’s
intellectual human capital. Our analysis of the
degree to which the human capital is used to access
upstream knowledge is based on a noted bifur-
cation of star versus non-star scientists (Rothaer-
mel and Hess, 2007; Zucker and Darby, 1996).
The importance of applying these categorizations
is reflective of the knowledge that is needed to
facilitate innovation at different points along the
value chain. We propose that resource combina-
tions that focus on the same value chain activities
provide redundant knowledge and, thus, are substi-
tutes. Conversely, we hypothesize that the resource
combinations that link different value chain activ-
ities are complements, because they bring together
different types of knowledge needed to complete
the innovation process. To test these hypotheses,
we empirically track the innovative performance of
108 global pharmaceutical firms over three decades
(1974–2003).

THEORY AND HYPOTHESES

In high-velocity industries, the source of new
knowledge is often external to incumbent firms
(Powell, Koput, and Smith-Doerr, 1996). The
increasing complexity and multidisciplinary nature
of the innovation process forces pharmaceutical
firms to concurrently access external knowledge to
support both upstream and downstream value chain

activities (Arora and Gambardella, 1990; Rothaer-
mel and Hess, 2007). In these types of environ-
ments, a firm’s innovative performance appears
to be affected by its ability to create and man-
age connections with other organizations. Prior
research investigating this connectivity has pri-
marily focused on the role strategic alliances play
in developing an organization’s ability to access
sources of external knowledge (Ettlie and Pavlou,
2006; Gulati, 1999; Hagedoorn, 1993; Rothaermel
and Deeds, 2004).

It is important to note, however, that a firm’s
connectivity is also related to the firm’s scope of
collaborations—both formal (strategic alliances)
and informal (interpersonal) relationships. Analy-
sis of an organization’s connectivity to the external
environment requires knowledge not only of its
strategic alliances but also of its intellectual human
capital, which fosters, as indicated by the CEO
of Centocor (a biotechnology firm): ‘. . .dozens of
handshake deals and informal collaborations, as
well as probably hundreds of collaborations by our
company’s scientists with colleagues elsewhere’
(Powell et al., 1996: 120). Within high-velocity
industries, prior research has identified both strate-
gic alliances and intellectual human capital as
antecedents to innovation (Rothaermel and Hess,
2007). Given this importance, it is critical that
we further explore the interactions between these
activities, because they are used simultaneously as
firms pursue innovation.

Strategic alliances

Strategic alliances are a well-established means by
which firms gain access to the external knowl-
edge environment (Arora and Gambardella, 1990;
Gulati, 1998; Rothaermel, 2001). In their con-
ceptual treatment, Koza and Lewin (1998) estab-
lished that firms enter into different types of
alliances depending on the type of knowledge that
they are seeking to acquire. Firms can enter into
upstream alliances for the purpose of exploring
for new opportunities, while downstream alliances
are undertaken to exploit an existing capability
(Rothaermel et al., 2004). This functional view is
based on the position of an alliance along the value
chain. Upstream alliances tend to be primarily
focused on generating new basic knowledge, while
downstream alliances are often focused on generat-
ing knowledge that is more applied in nature (i.e.,
focused on leveraging production and marketing
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activities, see Grant and Baden-Fuller, 2004; Lavie
and Rosenkopf, 2006).

Firms conduct upstream research alliances to
discover something new, allowing the partners to
share and acquire tacit knowledge. These types
of alliances are usually undertaken with universi-
ties and other research institutions and are often
characterized by high uncertainty and frequent
failure (Rothaermel et al., 2004). On the other
hand, firms that conduct downstream alliances to
leverage complementary assets combine explicit
knowledge (Teece, 1992). Downstream alliances
generally join the drug development efforts of
new ventures with larger, more well-established
firms that provide manufacturing capabilities, reg-
ulatory know-how, market knowledge and access
(Rothaermel et al., 2004). Several empirical stud-
ies, across different types of firms, industries, and
time frames, provide robust support for the viabil-
ity of applying an upstream-downstream lens to
strategic alliances (Lavie and Rosenkopf, 2006;
Park, Chen, and Gallagher, 2002; Rothaermel,
2001; Rothaermel and Deeds, 2004). Following
this line of research, we dichotomize a firm’s
strategic alliances into upstream and downstream
to reflect their intent to leverage different types of
knowledge along the value chain.

Star scientists

In the pharmaceutical industry, star scientists pro-
vide critical connectivity to universities and other
sources of upstream knowledge (Arora and Gam-
bardella, 1990). Star scientists are important
boundary spanners, because a difference in coding
schemes exists, specifically between large public
firms and academic institutions and other high-
tech start-ups. This mismatch creates the possi-
bility of communication difficulties (Allen and
Cohen, 1969). It can be alleviated, however, by
the use of individuals ‘who are capable of trans-
lating between two coding schemes either through
personal contact or knowledge of the literature, and
who can act as bridges linking the organization to
other organizations and workers in the field’ (Allen
and Cohen, 1969: 13). The variations in coding
schemes between different knowledge communi-
ties is of concern because without boundary span-
ners that function as translators, the firm would
potentially be unable to assimilate tacit informa-
tion into codified knowledge that can lead to future
innovation.

Further, in high-velocity knowledge environ-
ments, boundary spanners are not only able to
keep the pulse of shifts in technology, but in many
cases may actually hold key knowledge them-
selves. Prior research has identified the spread of
biotechnology through the scientific community as
one case in point. Specifically, Zucker, Darby, and
Brewer (1998: 291) suggest that for at least 10 to
15 years the repository for key knowledge associ-
ated with biotechnology was with a ‘small initial
group of discoverers, their coworkers, and others
who learned the knowledge from working at the
bench-science level with those possessing the req-
uisite know-how.’

We suggest that star scientists provide an incum-
bent firm with access to upstream knowledge not
only through their own research but also by being
part of a broader scientific community. In sup-
port for this notion, Furukawa and Goto (2006)
found that the stars in science were responsible
for a disproportional large number of publica-
tions in scientific journals, and were thus engag-
ing in the creation of new (upstream) knowledge.
Our own data illustrate a similar trend. We find
that the top one percent of authors (employed by
one of the pharmaeutical companies in our sam-
ple) account for almost 40 percent of all publi-
cations (with at least one coauthor affiliated with
a pharmaceutical company). Engaging star scien-
tists in the open literature in turn lays a critical
foundation for subsequent innovation (Henderson
and Cockburn, 1994), because it builds and main-
tains a firm’s absorptive capacity, understood as
the firm’s ability to recognize, value, and exploit
new external knowledge (Cohen and Levinthal,
1990).

Contingency effects: star scientists and
strategic alliances

Two resource combinations are complementary
when the marginal return to one resource increases
in the presence of the other (Milgrom and Roberts,
1995). While there is potential for synergies
between sets of resources, there is also a potential
for a substitutive relationship, if doing more of an
activity to leverage a specific resource reduces the
marginal benefit of another (Arora and Ceccagnoli,
2006; Cassiman and Veugelers, 2006).

Our central argument is that the complemen-
tary or substitutive relationship between bundles
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of resources is a function of the types of knowl-
edge being combined. We suggest that activities
that link different segments of the value chain are
complementary, while those that focus on the same
value chain activity are substitutive. It is important
to note that our focus is on understanding the rela-
tionship between the different upstream and down-
stream value chain activities of an organization.
The contingency effects we stipulate occur after a
firm has established a threshold of minimum activ-
ity in each category.1 The two contingency effects
we are focusing on are combining 1) star scien-
tists and upstream alliances, and 2) star scientists
and downstream alliances in a firm’s pursuit of
innovation.

Although there are clearly some important dif-
ferences between star scientists engaging in knowl-
edge creation and dissemination and firms pur-
suing upstream research alliances, there is also
some element of equifinality present with respect
to the type of knowledge generated in each activ-
ity. This implies that investments in different inno-
vation activities can lead to similar outcomes.
Although an equifinality argument is necessary
for a substitutive relationship to occur, it is not
sufficient. More specifically, for a substitutive
relationship to occur, using one activity must
also marginally decrease the benefit of using
another. In the case of pharmaceutical firms, this is
exactly what we suggest happens when upstream
alliances and star scientists are simultaneously
employed for the purpose of gaining access to tacit
knowledge.

The premise of this argument stems from the
potential diseconomies of scope associated with
using different governance mechanisms. Specif-
ically, given the high velocity of the knowl-
edge environments in which they operate, access

1 It is theoretically possible that a firm sources all of its knowl-
edge internally through combining internal exploration by star
scientists with internal exploitation by staff scientists. Alter-
natively, it is theoretically possible that a firm sources all of
its knowledge externally through combining upstream alliances
with downstream alliances. Although these are theoretically pos-
sible combinations, they tend to be not probable, because the
vast majority of firms, across many different industries, have
moved to an open innovation system, combining internal and
external R&D (Chesbrough, 2003). Specifically, in our sample
of global pharmaceutical companies, 75 of the 108 (69%) of
the sample firms have followed a system of open innovation by
simultaneously employing at least one star scientist and one staff
scientist, combined with the pursuit of at least one upstream and
one downstream alliance during a single year. This figure jumps
to 99 percent of the firms when the window is increased to a
three-year time period.

to external communities of practice is critical
(Arora and Gambardella, 1990). Over time, firms
within these communities of practice develop
relationship-specific knowledge that cannot be eas-
ily replicated with other firms outside the spe-
cific community (Brown and Duguid, 2001; Kogut
and Zander, 1992). Such firm-specific research and
development (R&D) activities have been empir-
ically demonstrated in the petroleum industry
(Helfat, 1994a; Helfat, 1994b). Further, early deci-
sions affect outcomes in the distant future due
to time compression diseconomies (Dierickx and
Cool, 1989). Given this, the longer a firm par-
ticipates in a community of practice, the more
social capital, trust, tacit knowledge, and bar-
gaining power it will accumulate with the other
members of the community (Brown and Duguid,
2001; Reed and DeFillippi, 1990). These mech-
anisms indicate that marginal transaction costs
diminish with the level of involvement a phar-
maceutical firm has with a given community of
practice.

The key point for our argument is that for
pharmaceutical firms, the members of the com-
munities of practice tend to be different, depend-
ing on whether they relate to the firm’s network
of alliance partners (primarily small biotechnol-
ogy firms) or the networks of individual scien-
tists (Gambardella, 1992). Over time, firms tend to
develop a competence to facilitate communication
with and participation within a specific commu-
nity. For example, Merck prefers to leverage their
own star scientists when exploring for new ther-
apeutic areas, whereas Lilly tends to rely more
on upstream alliances (Galambos and Sturchio,
1998).

It is important to note that our arguments here
relate solely to the R&D process in the pharmaceu-
tical industry. Specifically, in other industries in
which this process is not as clearly structured, star
scientists may serve a complementary role in the
innovation process by suggesting potential alliance
targets and helping to facilitate the knowledge-
sharing process between partners. Nonetheless, we
suggest that within the pharmaceutical industry,
the transaction costs of participating in multiple
communities of practice at the same stage in the
knowledge conversion process will outweigh these
potential benefits.

Hypothesis 1: Different upstream activities are
substitutes, such that the interaction between
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star scientists and upstream alliances is neg-
ative and thus decreases a firm’s innovative
performance at the margin.2

Successful innovation requires that a firm com-
bines upstream and downstream value chain activ-
ities (Teece, 1986). By combining these activities,
firms are not only able to capture greater eco-
nomic rents, but also to enhance the potential for
uncovering synergies within the innovation pro-
cess. Specifically, we suggest that firms that are
able to integrate upstream knowledge generated by
star scientists with downstream alliances are able
to elicit complementarities. This resource combi-
nation allows firms to leverage distinctly different
parts of knowledge to complete the innovation pro-
cess. In downstream alliances, drug discovery and
early-stage development is completed by the new
venture, before the drug is ‘handed-off’ to the phar-
maceutical company for large-scale manufacturing,
pre- and clinical trials, regulatory management by
the Food and Drug Administration, and finally dis-
tribution and sales (Pisano and Mang, 1993). Thus,
combining star scientists and downstream alliances
constitutes a matching of complementary assets
because it links different types of knowledge to
complete the value chain.

We further hypothesize that the value in com-
bining upstream and downstream activities will
outweigh the costs associated with using dif-
ferent mechanisms as outlined above. Support
for this can be found in the research examin-
ing the importance of organizations simultane-
ously pursuing disparate innovative activities (e.g.,
Tushman and O’Reilly, 1996). Such research has
highlighted the importance of being ambidextrous,
or being able to balance the exploration and
exploitation of knowledge. Although we do not

2 In a more technical fashion, if we define star scientists as
StarUpstream and upstream alliances as AllUpstream based on their
position on innovation value chain, and innovative performance
as π , it follows that

π
(
StarUpstream, AllUpstream

) − π
(
StarUpstream, AllUpstream

)

< π
(
StarUpstream, AllUpstream

) − π
(
StarUpstream, AllUpstream

)
,

where prime indicates that a firm does not engage in that specific
activity. The formula states that the innovative performance of
firms that engage in upstream research through star scientists
and upstream alliances simultaneously is lower than for firms
that engage in upstream research through either star scientists
or upstream alliances, holding all else constant (Milgrom and
Roberts, 1995).

suggest that there is a precise matching between
the constructs of upstream/downstream and explo-
ration/exploitation, the locus on knowledge (i.e.,
upstream or downstream) is often reflective of
the motivation of the accessing organization (i.e.,
exploration or exploitation). Within the setting
of our study, star scientists are embedded in
the greater scientific community. These relation-
ships are often premised on the exploration for
new projects with the highest potential (Stephan,
1996). Likewise, pharmaceutical firms tend to
use their downstream connections for the pur-
pose of exploiting or commercializing knowledge
that is held within the firm (Rothaermel, 2001).
Thus, pursuing these mechanisms simultaneously
is likely to be reflective of an organization that is
attempting to pursue an ambidextrous innovation
strategy.

Hypothesis 2: Upstream and downstream activ-
ities are complements, such that the interac-
tion between star scientists and downstream
alliances is positive and thus increases a firm’s
innovative performance at the margin.3

METHODOLOGY

Research setting

The global pharmaceutical industry is our research
setting. We tracked annual data for 108 incumbent
firms over 30 years, beginning in 1974 until the
end of 2003. An incumbent pharmaceutical firm is
one that was founded prior to the emergence of
biotechnology, which commenced with the 1973
breakthrough publication on r-DNA (Cohen et al.,

3 In a more technical fashion: If we define star scientists as
StarUpstream and downstream alliances as AllDownstream based
on their position on innovation value chain, and innovative
performance as π , it follows that

π
(
StarUpstream, AllDownstream

) − π
(
StarUpstream, AllDownstream

)

> π
(
StarUpstream, AllDownstream t

) − π
(
StarUpstream, AllDownstream

)
,

where prime indicates that a firm does not engage in that specific
activity. The formula states that the innovative performance of
firms that combine upstream research through star scientists with
downstream alliances is higher than for firms that engage in
upstream research through either star scientists or downstream
research through downstream alliances alone, holding all else
constant (Milgrom and Roberts, 1995).
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1973). The sample comprises pharmaceutical com-
panies that engage in research, discovery, develop-
ment, and commercialization of new drugs that are
placed inside the human body (in vivo). To track
the innovation of the incumbent pharmaceutical
companies, we collected fine-grained longitudinal
data on 900 acquisitions, 3,100 alliances, 4,000
new drug introductions, 147,000 patents, 171,000
publishing scientists, 672,000 journal publications,
and 9.9 million journal citations.

Dependent variables

We view new product development as a process
of discovering new knowledge with the intent of
transforming and embodying it in a final prod-
uct (Madhavan and Grover, 1998). To capture the
effect of both upstream and downstream knowl-
edge, we use two dependent variables that rep-
resent different knowledge stages along the inno-
vative process: citation-weighted patents and new
drugs in development.

Citation-weighted patents

Although simple patent counts are a frequently
used indicator of innovative output, they are inher-
ently limited in the extent to which they can
capture differences in patent quality (Griliches,
Pakes, and Hall, 1987). Patents that are highly
cited tend to be perceived as the more important
inventions (Albert et al., 1991; Stuart, 1998). We
collected forward citation-weighted patent infor-
mation (citation-weighted patents) for the sample
firms following the procedure detailed in Hall,
Jaffe, and Trajtenberg (2005). We obtained these
data primarily through the National Bureau of
Economic Research patent data provided by Hall,
Jaffe, and Trajtenberg (2001). In addition, we used
the United States Patent and Trademark Office
(USPTO) patent database to both cross-check the
validity of the data, and to update them. We cre-
ated a five-year citation-weighting window, and
were able to do this for 86 firms between the years
1974–2001.4

4 We collected patent citation data until the end of 2006. While
the sample sizes for the regression models employing the
citation-weighted patents (86 firms) and new drug development
(56 firms) are by necessity less than the 108 firms in the initial
sample frame, we are confident that this does not introduce a
systemic sample selection bias, because the industry structure
of the global pharmaceutical industry is fairly oligopolistic and

New drugs in development

To proxy for the firm’s ability to combine dif-
ferent types of knowledge along the innovation
value chain, we counted the number of new drugs
annually that entered a firm’s pipeline at the pre-
clinical stage of development (new drugs). These
are so-called lead candidates, because they have
overcome significant uncertainty: only 2.5 percent
of all drug compounds tested become lead candi-
dates to enter preclinical testing in the laboratory
and on animals before moving to phase I clini-
cal trials where they are tested on humans (Gio-
vannetti and Morrison, 2000). We chose this new
product development measure to reduce concerns
associated with the time lags between dependent
and independent variables caused by the lengthy
drug development and approval process (Galam-
bos et al., 1998). The average firm in our sample
introduced just over six lead drug candidates into
their pipeline per year. We obtained these data
from PharmaProjects, a comprehensive database
tracking new drug development in the pharmaceu-
tical industry.

Independent variables

Star scientists

We followed the process described in detail by
Lacetera, Cockburn, and Henderson (2004) and
Rothaermel and Hess (2007) to identify star scien-
tists. Using several sources including the BioScan
and Recap databases, we identified a population
of 125 pharmaceutical firms.5 We then searched
the Web of Science ISI database to identify jour-
nal publications that appeared between 1974 and
2005,6 had a keyword related to science research
(excluding social science research and nonhuman

has become more concentrated over time. We tracked the phar-
maceutical sales of 52 sample firms that were not diversified
outside pharmaceuticals. These focused pharmaceutical compa-
nies represent only 44 percent of the initial sample, but account
for 75 percent of the total sales for pharmaceuticals worldwide
(IMS Health, 2008). Moreover, we also explicitly control for this
concentration effect trough tracking horizontal mergers between
pharmaceutical firms in the sample.
5 All 108 firms in the initial sample were included in the sample
drawn to construct the measures for intellectual human capital.
There were 17 horizontal mergers over the study period, which
we explicitly controlled for.
6 Note that our time period to identify stars is by design two
years longer than the study period (1973–2003) to account, to
some extent, for a ‘rising star’ effect associated with the potential
right censoring of the data.
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focused research, e.g., agricultural), and could be
unambiguously connected with one of the pharma-
ceutical firms in the sample. From the population
of over 672,000 publications, we collected the fol-
lowing information: author’s name, author’s affili-
ation(s), journal name, article title, keywords, pub-
lication year, and number of times cited. We then
compiled a list of authors with an aggregate num-
ber of publications and times cited for each year.
This query yielded the records of over 171,000
authors who on average published 3.9 papers and
that were cited 66.3 times. We then tied back each
author to the pharmaceutical firms in our sample
based on the authors’ affiliations as indicated in
the journal article(s).

We followed Rothaermel and Hess (2007) by
identifying star scientists as researchers who had
both published and been cited at a rate of three
standard deviations above the mean.7 To qualify
for this elite group of star scientists, an individual
must have published more than 28 papers during
the study period and had to be cited at least 861
times. Based on this intersection, we identified
1,071 star scientists. These individuals represent
only 0.63 percent of the total population of scien-
tists in this sample, but produced 12.2 percent of
all publications and garnered 22.1 percent of all
citations. This made star scientists 19 times more
productive in terms of research output and 35 times
more impactful in terms of influencing other sci-
entists’ research. The average pharmaceutical firm
employed about 23 star scientists (and 211 non-star
scientists) in a given year. We explicitly control for
non-star scientists (non-star scientists).

Strategic alliances

To document the alliances that the pharmaceu-
tical firms had entered with different partners,
we tracked each firm’s alliances with universi-
ties, research institutions, and biotechnology firms
(Powell et al., 1996). To obtain the most accu-
rate alliance data as possible, we used various
issues of the BioScan industry directory and the

7 In addition to examining stars at three standard deviations (sd)
above the mean for both publications and citations, additional
sensitivity analysis indicates that our results are robust to equat-
ing stardom with two and four sd above the mean, but not one sd.

Recap database.8 The average sample firm entered
approximately one alliance per year.

We content analyzed each alliance description
to decompose a firm’s total strategic alliances
into upstream and downstream agreements. Fol-
lowing a well-established coding procedure in
prior research (Koza and Lewin, 1998; Lavie
and Rosenkopf, 2006; Park et al., 2002; Rothaer-
mel, 2001), we coded grants, research and R&D
alliances as upstream alliances, because they focus
on the basic research oriented upstream knowl-
edge discovery activities of the value chain. We
identified manufacturing, licensing, development,
and supply alliances as downstream alliances,
because they focus on the downstream knowledge-
leveraging activities of the value chain. Accord-
ingly, we identified 2,041 upstream alliances and
1,061 downstream alliances.9

To control for differential strengths of alliances
ties, we collected information for each alliance
to determine whether it was based on an equity
exchange, which is considered to be a stronger
tie (Gulati, 1995). While non-equity alliances are
contract-based cooperative agreements to exchange
knowledge and resources, equity alliances are
based on taking an equity stake in a partner,
exchanging equity, or setting up a third organi-
zation as a joint venture. We calculated a variable
equal to the percentage of total alliances that are
equity agreements (% equity alliances). About 12
percent of all alliances were equity based.

Additional control variables

We include a detailed set of additional control
variables to account for potential heterogeneity
at the drug, firm, network, and industry level.
These controls are well established and validated

8 BioScan and Recap are fairly consistent in their reporting.
We found their intersource reliability to be greater than 0.90
when documenting alliances. BioScan and Recap appear to be
the two most comprehensive publicly available data sources
documenting alliance activity in the global biopharmaceutical
industry, and they have been used frequently in prior research,
although not together, but in isolation (e.g., Shan, Walker, and
Kogut, 1994; Lane and Lubatkin, 1998; Powell et al., 1996).
9 Research assistants that were blind to each other and the
theory to be tested coded the alliance data. In addition, in an
attempt to ensure the accuracy of this coding, two additional
research assistants independently coded each 100 randomly
selected alliance agreements. The interrater reliability was 98
percent, and thus well above the recommended threshold of 70
percent (Cohen et al. 2003).
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by prior research, and include: a pharmaceuti-
cal family tree to control for horizontal merger
(merged firm); whether a firm’s strategy is focused
solely on drug development (e.g., Merck) or a
diversified product line (e.g., Johnson and John-
son) (diversified ); nationality (US, EU, or Japan);
financial performance (net income); total patent
propensity (total patents), R&D expense (R&D
expense); acquisitions focused on research and
development (R&D acquisitions); the percentage
of new products focused on cancer treatments (%
cancer drugs); and temporal effects (year dum-
mies). We collected financial data from a number
of sources including Compustat and annual finan-
cial reports. All financial data are inflation adjusted
in constant 2000 U.S. dollars.

Estimation procedure

The dependent variables (citation-weighted patents
and new drug indications) are count variables,
and thus take on only nonnegative integer val-
ues. A negative binomial estimation provides a
better fit for count data than the more restric-
tive Poisson model.10 Negative binomial regres-
sion accounts for an omitted variable bias, while
simultaneously estimating heterogeneity (Cameron
and Trivedi, 1986; Hausman, Hall, and Griliches,
1984). Moreover, based on econometric theory, the
use of either a fixed- or a random-effects specifi-
cation permits one to reduce the threat for unob-
served heterogeneity (Greene, 2003). We applied a
Hausman (1978) specification test, and its results
revealed that there was not a systematic variation
between the random- and fixed-effects estimations.
Taken together, we applied the following random-
effects negative binomial model:11

P(nit/ε) = e−λit−1 exp(ε)λinit−1/nit − 1!,

10 In an attempt to address the concern of endogeneity, we
also applied a conditional fixed-effects Poisson estimation. The
results were robust.
11 To assess how sensitive our results are to the reported random-
effects specification, we additionally applied a conditional fixed-
effects estimation. While the hypothesized results remained
robust, in Model 1c (citation-weighted patents) there was a
reversion in the findings, such that the coefficient for star
scientists became negative and significant (p < 0.05) and the
squared-star coefficient was positive and significant (p < 0.05).
This result clearly does not fit with the rest of the estimations and
we hypothesize may be a function of the fact that the citation-
weighted panel has a reduced number of time periods without a
corresponding reduction in sample size. Thus, fixed effects may
be picking up more random error in these models.

where n is a nonnegative integer count variable
capturing each pharmaceutical firm’s innovative
output. Accordingly, P(nit/ε) indicates the prob-
ability that pharmaceutical firm i develops the
expected number n of these outputs in year t .12

As illustrated in Table 1, all of the bivariate cor-
relations are below the recommended 0.70 thresh-
old. To assess the threat of multicolinearity, we
calculated the variance inflation factors (VIFs) for
each coefficient. The maximum estimated VIF for
was 5.8, well below the recommended ceiling of
10 (for a discussion of these issues see Cohen
et al., 2003). In an attempt to compensate for a
potential simultaneity bias and to allow for poten-
tial claims of causality, we lagged the financial
measures (net income, revenues, and R&D expen-
ditures) as well as alliances and acquisitions by
one year (Gulati, 1999; Hall, Griliches, and Haus-
man, 1986; Stuart, 1998). We did not lag our
measures of star scientists because of the close
temporal link between the date at which an article
was published (this was the basis for our mea-
sure of star scientists) and the innovative output
associated with the publication (Murray, 2002).
Moreover, we submit that through the application
of the Hausman-specification test and the result-
ing random-effects specification, in combination
with an extensive set of control variables and vari-
ous robustness tests, we have attempted to address
the issue of endogeneity (Hamilton and Nicker-
son, 2003). As detailed below, we also conducted
a split-sample regression to assess the robustness
of our interaction results.

RESULTS

Tables 2–3 present the regression results using the
two different dependent variables. In each case,
we first estimated a baseline model including the
control variables and direct effects only. Next, we
added the interaction effects. With the exception
of Model 1b, each subsequent model represents a
significant improvement over the respective base-
line models at p < 0.05, or smaller. Models 1a
and 2a each contain all the controls, Models 1b
and 2b additionally contain all direct effects as

12 The results are robust to applying a zero-inflated Poisson
estimation.
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Table 2. Regression results for random-effect negative binomial estimation: citation-weighted patents

Forward citation-weighted patents

Model 1a Model 1b Model 1c

beta s.e. beta s.e. beta s.e.

Year effects Included Included Included
Constant −1.2168 (0.5770) −1.2052 (0.5772) −1.1763 (0.5768)
Merged firm 0.0837 (0.0696) 0.0719 (0.0703) 0.0794 (0.0692)
Diversified 0.0930 (0.0947) 0.0819 (0.0967) 0.0711 (0.0969)
US firm 0.2549∗ (0.1277) 0.2517∗ (0.1289) 0.2452 (0.1285)
EU firm 0.1122 (0.1298) 0.1173 (0.1313) 0.1026 (0.1313)
Net income −0.0171 (0.0400) −0.0231 (0.0404) −0.0194 (0.0404)
% equity alliances 0.0268 (0.0159) 0.0265∗ (0.0159) 0.0257 (0.0159)
Total patents 0.2055∗∗∗ (0.0245) 0.2092∗∗∗ (0.0249) 0.2099∗∗∗ (0.0250)
R&D expense 0.1369∗∗∗ (0.0241) 0.1377∗∗∗ (0.0243) 0.1421∗∗∗ (0.0241)
R&D acquisitions −0.0002 (0.0168) −0.0004 (0.0172) −0.0058 (0.0174)
Non-star scientists 0.1503∗∗∗ (0.0336) 0.1462∗∗∗ (0.0363) 0.1490∗∗∗ (0.0368)

Upstream alliances 0.0131 (0.0161) 0.0098 (0.0337) 0.0171 (0.0327)
Upstream alliances2 0.0014 (0.0241) 0.0138 (0.0226)
Downstream alliances 0.0057 (0.0145) 0.0506∗ (0.0290) 0.0492∗ (0.0292)
Downstream alliances2 −0.0430∗ (0.0248) −0.0444∗ (0.0246)
Star scientists −0.0221 (0.0234) 0.0128 (0.0350) 0.0272 (0.0363)
Star scientists2 −0.0322∗ (0.0187) −0.0143 (0.0201)

Star scientists ×
upstream alliances

−0.0159∗∗ (0.0062)

Star scientists ×
downstream alliances

0.0029 (0.0060)

Log likelihood −4606.01 −4490.13 −4486.66
Chi square 503.1∗∗∗ 503.8∗∗∗ 513.9∗∗∗

Improvement over base
(1c2)

0.70 10.80∗

n = 1, 163
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001; Huber-White robust standard errors in parentheses.

well as squared effects for the variables of the-
oretical interest in this study, while we added the
interaction effects in Models 1c and 2c.

Hypothesis 1 posits that innovative activities that
represent attempts to access upstream knowledge
are substitutes. We thus expect the interaction
between star scientists and upstream alliances to
be negative (and statistically significant).13 We find
support for Hypothesis 1. The interactions between
star scientists and upstream alliances are negative
and statistically significant in Model 1c (p < 0.05)
when predicting citation-weighted patents, and in

13 Complements and substitutes correspond to interactions in
moderated regression analysis because their combined effects
differ from the sum of their separate parts. Specifically, comple-
ments are represented by positive interaction effects reflecting
their synergizing behavior, while substitutes are represented by
negative interaction effects reflecting their compensating behav-
ior (see Cohen et al., 2003: 255–260).

Model 2c (p < 0.05) when predicting new product
development.

In Hypothesis 2, we suggest that innovation
activities that link different aspects of the value
chain complement one another. We thus expect
the interaction between star scientists and down-
stream alliances to be positive (and statistically
significant). We find support for this hypothe-
sis when predicting new drugs in development.
The interaction between star scientists and down-
stream alliances is positive and statistically sig-
nificant in Model 2c (p < 0.05) when predicting
new drugs in development. The coefficient for the
interaction between star scientists and downstream
alliances does not reach significance, however,
when predicting citation-weighted patents (Model
1c). The lack of significance in the interaction
between star scientists and downstream alliances
when predicting citation-weighted patents is not
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Table 3. Regression results for random-effect negative binomial estimation: new drugs in development

New drugs in development

Model 2a Model 2b Model 2c

beta s.e. beta s.e. beta s.e.

Year effects Included Included Included
Constant 2.8135 (0.2304) 2.8190 (0.2336) 2.8907 (0.2387)
Merged firm 0.2820∗ (0.1318) 0.2950∗ (0.1304) 0.2903∗ (0.1297)
Diversified 0.0730 (0.1515) 0.0457 (0.1482) 0.0195 (0.1484)
US firm 0.2453 (0.2027) 0.2158 (0.1989) 0.2346 (0.1978)
EU firm 0.0303 (0.1979) 0.0595 (0.1973) 0.0903 (0.1965)
Net income 0.0372 (0.0353) 0.0390 (0.0340) 0.0447 (0.0346)
% equity alliances −0.0552 (0.0376) −0.0595 (0.0375) −0.0605 (0.0376)
% cancer drugs 0.0047 (0.0082) 0.0039 (0.0081) 0.0236∗ (0.0142)
R&D expense 0.0484 (0.0436) 0.0503 (0.0417) 0.0579 (0.0439)
R&D acquisitions 0.0104 (0.0215) 0.0131 (0.0209) 0.0126 (0.0208)
Non-star scientists 0.1152∗∗∗ (0.0377) 0.0966∗∗ (0.0371) 0.0742∗ (0.0408)

Upstream alliances −0.0468 (0.0286) −0.0110 (0.0498) 0.0029 (0.0501)
Upstream alliances2 −0.0249 (0.0333) −0.0348 (0.0332)
Downstream alliances 0.0389∗ (0.0192) 0.0019 (0.0398) −0.0078 (0.0410)
Downstream alliances2 0.0264 (0.0241) 0.0169 (0.0246)
Star scientists −0.0673∗ (0.0273) 0.1629∗ (0.0835) 0.1810∗ (0.0856)
Star scientists2 −0.1533∗∗ (0.0552) −0.1499∗∗ (0.0583)

Star scientists × upstream
alliances

−0.0264∗ (0.0141)

Star scientists × downstream
alliances

0.0139∗ (0.0075)

Log likelihood −999.5 −975.10 −972.90
Chi square 807.7∗∗∗ 857.1∗∗∗ 879.5∗∗∗

Improvement over base (1c2) 49.40∗∗∗ 71.80∗∗

n = 465
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001; Huber-White robust standard errors in parentheses.

entirely unexpected. Although new knowledge is
often developed during the refinement of down-
stream practices, the bulk of an organization’s
patents are related to the search for new knowl-
edge that is most often found in upstream part-
ners (Baum et al., 2000; Rothaermel and Deeds,
2004).

Some of the results for the direct effects are
also noteworthy. Specifically, we find that there
seems to be a positive, yet diminishing effect of
downstream alliances (Model 1b) and star scien-
tists (Model 2b). The diminishing returns effect
to downstream alliances echoes results in prior
work (Rothaermel, 2001). Additionally, the effect
of non-star scientists was positive and significant
in predicting both citation-weighted patents and
new drugs in development. These findings also res-
onate with prior work (Furukawa and Goto, 2006;
Rothaermel and Hess, 2007).

As a robustness check, we applied a split-sample
approach recommended by Shaver (2007) for test-
ing interaction effects in nonlinear estimations. We
split the sample along the mean of intellectual
human capital (IHC), which is 224 scientists for
a given year at a given firm. We found support at
p < 0.05 for Hypothesis 1 in both subsamples and
for Hypothesis 2 only in the high IHC subsample.

DISCUSSION

Through applying the upstream/downstream frame-
work, we encapsulate the innovative activities of
individuals and in doing so attempt to synthe-
size literature investigating individual talent with
the literature on concurrent sourcing (Parmigiani,
2007; Parmigiani and Mitchell, 2009). By analyz-
ing a dichotomy of individuals based on star versus
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average employees within the value chain frame-
work, we demonstrate that pursuing certain activ-
ities concurrently can result in improved innova-
tive performance, despite their inherent differences
and unique managerial challenges. As hypothe-
sized, the benefits of completing the knowledge
value chain outweigh the costs associated with
being able to develop the disparate competen-
cies associated with both alliances and human
resource management. Pursuing the various stages
of the value chain simultaneously provides the
basis for unique resource combinations that can be
the source of superior performance. Our empirical
finding validates Peteraf’s (1993: 187) theoretical
insight offered in her treatise on the resource-based
view: ‘. . . a brilliant, Nobel prize winning scien-
tist may be a unique resource, but unless he has
firm-specific ties, his perfect mobility makes him
an unlikely source of sustainable advantage.’ This
implies that any performance effects of star scien-
tists on firm innovation are contingent upon the
stars’ connections to other firm-specific resources
(Groysberg, Lee, and Nanda, 2008).

As a corollary to this, we find that the pursuit of
redundant mechanisms simultaneously (e.g., both
activities represent upstream activities), results in
a marginal decrease in innovative performance.
This substitutability may be reflective of an orga-
nization that is overly focused on either upstream
or downstream activities, which is indeed a com-
monly observed phenomenon (Levinthal and
March, 1993). Repeated failure, for example, tends
to drive organizations toward extensive explo-
ration for upstream knowledge (failure trap). The
dynamic of failure turns organizations into ‘fren-
zies of experimentation, change, and innovation’
(Levinthal and March, 1993: 105). Firms that
engage in such activities at the expense of the
downstream portion of the value chain incur the
substantial costs of experimentation without reap-
ing the commensurate benefits thereof (March,
1991). These firms, for example, may pursue
too many distinctly different scientific avenues
without developing the competences required to
exploit any new knowledge gained, and thus fail
to transform it into commercially viable products,
processes, or services, negating any capability
development effect (Helfat and Raubitschek,
2000).

As this study represents an initial attempt to
understand the relationship between different inno-
vative activities, one limitation is related to the

research setting. We suggest that the pharmaceuti-
cal industry represents an interesting and appropri-
ate setting for investigating the knowledge acquisi-
tion and assimilation associated with upstream and
downstream activities. Given the idiosyncrasies
associated with the pharmaceutical industry in
terms of the importance of scientific knowledge
and new product development, however, future
studies are needed to enhance the external validity
of our findings. Our split-sample analysis detailed
above also highlights the importance of under-
standing the differences between the behaviors of
different types of firms. Specifically, our finding
regarding the substitutive relationship between star
scientists and upstream alliances may be a func-
tion of the research setting. The knowledge-driven
nature of the pharmaceutical industry is such that
organizations expend significant resources on the
development of their alliance management capabil-
ity and human resources. These expenditures are
likely to augment the potential transaction costs
associated with using multiple activities simulta-
neously. That is, in other industries, star scien-
tists may help organizations choose their upstream
alliance partners, thus acting in a complementary
rather than substitutive manner. This is what one
would expect based on the congruence hypothesis
(Burnes and Stalker, 1961).

In conclusion, we submit that this study extends
our understanding of the importance of consider-
ing not only the heterogeneity of a firm’s intel-
lectual human capital but also the relationship
between key innovative activities along the knowl-
edge value chain.
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