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Following the dynamic capabilities perspective, we suggest that antecedents to innovation can be found at the individual,
firm, and network levels. Thus, we challenge two assumptions common in prior research: (1) that significant variance

exists at the focal level of analysis, whereas other levels of analysis are assumed to be homogeneous, and (2) that the
focal level of analysis is independent from other levels of analysis. Accordingly, we advance a set of hypotheses to
simultaneously assess the direct effects of antecedents at the individual, firm, and network levels on innovation output. We
then investigate whether a firm’s antecedents to innovation lie across different levels. To accomplish this, we propose two
competing interaction hypotheses. We juxtapose the hypothesis that the individual-, firm-, and network-level antecedents to
innovation are substitutes versus the proposition that these innovation mechanisms are complements. We test our multilevel
theoretical model using an unusually comprehensive and detailed panel data set that documents the innovation attempts
of global pharmaceutical companies within biotechnology over a 22-year time period (1980–2001). We find evidence that
the antecedents to innovation lie across different levels of analysis and can have compensating or reinforcing effects on
firm-level innovative output.

Key words : dynamic capabilities; organizational learning; innovation; multilevel theory; longitudinal panel data;
pharmaceutical and biotechnology industries

Introduction
The recent extension of the resource-based view into
dynamic markets provides a fresh perspective for ana-
lyzing how firms develop new capabilities to cope with
shifting markets. This theoretical perspective posits that
a firm’s ability to “integrate, build, and reconfigure inter-
nal and external competences to address rapidly chang-
ing environments” lies at the center of its capability to
innovate (Teece et al. 1997, p. 516). Dynamic capa-
bilities facilitate not only the ability of an organiza-
tion to recognize a potential technological shift, but also
its ability to adapt to change through innovation (Hill
and Rothaermel 2003). Eisenhardt and Martin (2000,
p. 1107) suggest that antecedents to dynamic capabil-
ities, which they describe as “processes to integrate,
reconfigure, gain, and release resources—to match and
even create market change,” can be found at the individ-
ual, firm, or network level (see also Zollo and Winter
2002).
Assuming that firms can draw on antecedents across

different levels to build dynamic capabilities, several
important but underexplored questions arise, such as:
Where is the locus of the antecedents to firm-level
dynamic capabilities? Does the locus lie within the indi-
vidual, within the firm, or within networks? If so, which
levels are relatively more important? Or, does the locus
of the antecedents to dynamic capabilities lie within
the intersection of any of these levels? In other words,
does the locus lie across multiple levels of analysis?

If the locus of the antecedents to dynamic capabilities
lies across multiple levels of analysis, are the different
mechanisms to innovate complements or substitutes?
Extant research generally focuses on only one level of

analysis while neglecting other levels of analysis, thus
opening the door for spurious findings due to unob-
served heterogeneity. When studying the dynamics of
technological innovation, for example, researchers gen-
erally analyze incumbent firms as a more or less homo-
geneous group of firms or as an industry, thus neglecting
to investigate firm-differential performance (Christensen
1997, Foster 1986, Henderson and Clark 1990, Tushman
and Anderson 1986). Likewise, when analyzing firm-
differential performance, researchers invoke constructs
like resources, competencies, capabilities, processes, and
routines (Barney 1991, Henderson and Cockburn 1994,
Nelson and Winter 1982, Peteraf 1993), while neglect-
ing individual-level heterogeneity. Finally, the handful of
researchers that highlight individual-level heterogeneity
as an antecedent to firm-level heterogeneity (Lacetera
et al. 2004; Zucker and Darby 1997a; Zucker et al.
1998, 2002a) generally discount firm- and network-level
effects.
Recent theoretical contributions (Felin and Foss 2005,

Felin and Hesterly 2007, Klein et al. 1994, Dansereau
et al. 1999), however, have identified two serious prob-
lems with the dominant unilevel research approach,
which we find particularly salient to our research ques-
tion concerning the locus of antecedents to dynamic

898

IN
FO

R
M
S

ho
ld
s

co
py

ri
gh

t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Rothaermel and Hess: Building Dynamic Capabilities
Organization Science 18(6), pp. 898–921, © 2007 INFORMS 899

capabilities. First, concentrating on only one level of
analysis implicitly assumes that most of the heterogene-
ity is located at the chosen level, whereas alternate levels
of analysis are considered to be more or less homoge-
neous. Studies of firm-level heterogeneity assume, for
example, that significant variation occurs at the firm
level of analysis, whereas individuals are more or less
homogeneous or randomly distributed across firms. Sec-
ond, when focusing on one level of analysis, researchers
implicitly assume that the focal level of analysis is more
or less independent from interactions with other lower-
or higher-order levels of analysis. Firm-level heterogene-
ity, for example, is assumed to be relatively independent
from individual- or network-level effects. Taken together,
the assumptions of homogeneity in, and independence
from, alternate levels of analysis are serious concerns that
could lead to spurious empirical findings.
To address the threats of homogeneity and inde-

pendence, we develop a multilevel theoretical model
that accounts for potential heterogeneity in and across
three distinct levels when explaining and predicting
innovation: the individual level, representing internal
investments such as employee hiring; the firm level,
representing internal investments such as research and
development (R&D); and the network level, representing
external investments such as alliances or acquisitions.
The integrative theoretical model advanced here ena-

bles us to not only assess the effect of each innovation
antecedent while explicitly controlling for potentially
confounding lower- or higher-order levels of analysis,
but also to assess if and how the different innovation
antecedents across the three levels of analysis interact
with one another. First, to challenge the assumption of
homogeneity across levels of analysis, we develop direct
effects hypotheses pertaining to each of the three lev-
els of analysis. Second, to assess the validity of the
assumption of independence across levels, we advance
two competing interaction hypotheses concerning the
potential complementary or substitutive nature of inno-
vation antecedents in the intersections across different
levels of analysis: individual-firm, individual-network,
and firm-network.
We selected the global pharmaceutical industry as the

research setting to empirically test our integrative theo-
retical model across multiple levels of analysis, because
this industry experienced a radical technological trans-
formation with the advent of biotechnology based on
genetic engineering, genomics, and other novel research.
We document the attempts of incumbent pharmaceutical
companies to build the capabilities necessary to inno-
vate within biotechnology. Methodologically, we make
a contribution by developing and analyzing a unique
panel data set that approaches the population of obser-
vations across different levels of analysis and categories.
To empirically test our hypotheses, we leverage fine-
grained longitudinal data on over 900 acquisitions, 4,000

alliances, 13,200 biotechnology patents, 110,000 non-
biotechnology patents, 135,000 scientists, 480,000 jour-
nal publications, and 9.2 million journal citations.

Theory and Hypotheses Development
Individual-Level Effects

Intellectual Human Capital. Unilevel research im-
plicitly assumes not only that nonfocal levels of analysis
are homogeneous, but does not generally consider the
importance of nonfocal levels when predicting het-
erogeneity at the focal level of analysis (Felin and
Foss 2005, Felin and Hesterly 2007). By investigat-
ing individual-level effects as a critical antecedent to
firm-level innovation, we question the legitimacy of the
assumption of homogeneity across levels. We posit that
intellectual human capital can be heterogeneously dis-
tributed across firms and therefore must be accounted
for when investigating firm-level innovation. We con-
sider intellectual human capital to be highly skilled and
talented employees like research scientists, who hold
advanced graduate degrees and doctorates. In our sam-
ple of global pharmaceutical companies, about 0.5% of
all employees fall in this category, as research scientists
that publish in academic journals.
To understand the role of intellectual human capital

in a firm’s ability to build new capabilities, researchers
have highlighted the emergence of tacit knowledge
resulting from the interaction of highly skilled human
capital (Almeida et al. 2002, Kogut and Zander 1992).
As an example, Henderson and Cockburn (1994) find
that locally embedded knowledge and skills among intel-
lectual human capital may be a unique source of inno-
vative competence for the firm. More specifically, the
disciplinary focus of groups of scientists within a firm
creates deeply embedded knowledge that is not easily
codified, and thus is difficult to transfer or imitate. For
instance, pharmaceutical firms often develop expertise
in specific areas, such as Eli Lilly’s focus on diabetic
therapy or Hoffman-La Roche’s expertise in the area of
antianxiety drugs. In a similar fashion, Leonard-Barton
(1992) indicates that the tacit knowledge developed by
skilled engineers with a specific production process over
an extended period of time may develop into a source of
innovation. Taken together, the specificity of the exter-
nal and internal learning necessary for a firm to innovate
favors those firms that invest in and maintain significant
levels of intellectual human capital.
A firm’s innovative performance is at least partially

a function of the value of its human capital (Hitt et al.
2001). Thus, organizations are expected to invest more
in acquiring, retaining, and training intellectual human
capital as the value of their human resources increases
(Gardner 2005). Such a case has emerged within the
realm of the biopharmaceutical industry, where changes
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in drug discovery and development have enhanced the
need for the input of scientists who are skilled in a wide
variety of disciplines, some of which, like molecular bio-
chemistry, are newly emerging (Cockburn et al. 2000,
Henderson and Cockburn 1994).

Hypothesis 1A. A firm’s innovative output is a pos-
itive function of its intellectual human capital.

Star Scientists. Numerous empirical and qualitative
studies provide convincing evidence that not all intellec-
tual human capital is created equally, giving rise to the
idea that significant heterogeneity exists within highly
specialized intellectual human capital. Lotka (1926) was
one of the first to note a highly skewed distribution per-
taining to research output among scientists. When study-
ing scientific publications in chemistry, he found that
only about 5% of scientists were responsible for more
than 50% of the total scientific research output. A similar
skewed distribution in research output is also reflected in
the patenting activity in U.S. and Japanese semiconduc-
tor firms (Narin and Breitzman 1995) and the patenting
output in German companies in the chemical, mechani-
cal, and electronic industries (Ernst et al. 2000).
Therefore, we suggest that intellectual human capital

can be conceptualized as consisting of two components:
star scientists and nonstar scientists. We understand a
star scientist to be someone who is, by an order of mag-
nitude, both more productive in and more influential on
a specific research field than the average (nonstar) sci-
entist active in this field. In particular, we hypothesize
that there exists a positive and significant relationship
between a firm’s star scientists and its innovative output,
above and beyond the effects of nonstar scientists.
Within the context of entrepreneurial biotechnology

ventures, star scientists have been shown to affect the
geographic location of firm entry into new technolo-
gies (Zucker et al. 1998) and to exert significant pos-
itive effects on a wide range of firm-level measures,
such as the number of products on the market, publish-
ing propensity, and network connections (Audretsch and
Stephan 1996, Zucker et al. 2002b). Ties to stars have
also been shown to shorten the time to initial public
offering (IPO) and to increase the amount of IPO pro-
ceeds (Darby and Zucker 2001). Thus, the assumption
of lower-level homogeneity inherent in most firm-level
and alliance research is even more questionable when
considering star scientists as part of a firm’s intellectual
human capital.
Star scientists assume gate-keeping and boundary-

spanning roles—critical functions in a firm’s ability to
innovate (Allen 1977, Allen and Cohen 1969, Tushman
1977, Tushman and Katz 1980). Gatekeepers are the few
key individuals within a firm who are capable of under-
standing and translating contrasting coding schemes.
Boundary spanners are able to bridge organizational and
environmental boundaries to act as an information filter

by evaluating, streamlining, and organizing knowledge
flows from external sources. Gatekeepers and boundary
spanners thus facilitate an organization’s ability to col-
lect, assimilate, and apply external information in a two-
step process. They are able to gather and understand
external information and then translate and disseminate
this information into terms that are meaningful and use-
ful to other organization members.
A firm’s star scientists not only function as technolog-

ical boundary spanners and gatekeepers, but also as the
organization’s information and knowledge core. Other
important pathways through which star scientists can
improve the innovative output of firms include: (1) posi-
tive spillovers to other researchers through the changing
of behavioral and cultural norms, such as legitimizing a
stronger focus on basic research; (2) changing the strate-
gic direction of the firm’s research and human resource
policies; and (3) recruiting other like-minded scientists
(Lacetera et al. 2004).
We propose that star scientists can be recruited from

the labor market, and that they can be a source of firm-
level heterogeneity in innovation. This assertion is true
if firms have different ex ante expectations of the rent-
generating potential of a star scientist. Our hypothesis,
therefore, follows Barney’s (1986) treatment of strategic
factor markets, which relaxes the strong assumption of
perfectly competitive factor markets, and in turn posits
that strategic factor markets are characterized by an ele-
ment of imperfection. Some preliminary evidence for
this assumption is found in the recent work by Stephan
et al. (2004), who show that in the case of biotechnology
IPOs, Nobel laureate scientists allow significant rents to
accrue to the firms who hired them, because their total
compensation packages were considerably less than the
stock price premium they created based on their out-
standing scientific reputations.

Hypothesis 1B. A firm’s innovative output is a posi-
tive function of its star scientists, controlling for nonstar
scientists.

Firm-Level Effects
We posit that heterogeneity in internal R&D capability
across firms partly explains innovative performance dif-
ferentials. Rosenberg (1990) underscores the importance
of internal R&D by stressing that a firm needs a sig-
nificant internal research capability to recognize, under-
stand, appraise, and apply internal knowledge that has
been placed on the shelf. Another important by-product
of an internal R&D capability is the creation of firm-
specific knowledge that enables a firm to take advantage
of knowledge generated externally (Cohen and Levinthal
1989). Tilton (1971), for example, observes this phe-
nomenon in the semiconductor industry. He concludes
that continued investments in internal R&D created an
in-house research capability that enabled these firms to
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keep abreast of the latest developments in semiconductor
research, to develop new technology internally, and also
to recognize, appraise, and assimilate new technology
developed elsewhere.
Continuing investments in R&D capability are nec-

essary, because R&D effectiveness is path dependent,
and thus, failure to invest in internal R&D at a given
time may foreclose future options in a particular tech-
nology (Cohen and Levinthal 1989). In support of this
idea, Helfat (1994a) provides convincing evidence for
the hypothesis that ongoing R&D investments create
a firm-specific capability whose heterogeneous distri-
bution across firms tends to persist over time (Helfat
1994b). Moreover, Helfat (1997) also demonstrates a
positive direct effect of R&D capability on innovative
performance in the petroleum industry. Thus, R&D capa-
bility has the potential to be the kind of valuable, rare,
inimitable, and nonsubstitutable resource that can form
the basis for superior innovation performance (Barney
1991, Peteraf 1993).
When confronted with a new technological paradigm,

internal R&D capability is especially relevant to innova-
tive performance. Multiple new technologies or different
versions of the same underlying technology frequently
compete until a new dominant design emerges (Ander-
son and Tushman 1990). Internal research capability
enables the incumbent firm to more accurately assess
and appraise the many new technology trajectories
that present themselves following radical technological
changes. In their multiindustry study, Rothaermel and
Hill (2005) show that internal R&D capability has a pos-
itive effect on a firm’s financial performance. This was
especially true for pharmaceutical companies follow-
ing the emergence of biotechnology because it allowed
them to identify promising research areas more read-
ily. Further, R&D capability has become more critical
to innovative performance because many industries have
become more science driven. Thus, firms are now even
more compelled to leverage advances in the fundamental
sciences (Cockburn et al. 2000, Narin et al. 1997).

Hypothesis 2. A firm’s innovative output is a posi-
tive function of its R&D capability.

Network-Level Effects
Significant technological breakthroughs are generally
exogenous to firms, because no single firm can keep
abreast of all technological developments through inter-
nal R&D. Powell et al. (1996) provide support for the
hypothesis that in industries characterized by complex
and rapidly expanding knowledge bases, the locus of
innovation lies within a network of learning composed
of incumbent firms, new entrants, and research institu-
tions, rather than within the boundaries of individual
firms. Thus, to build new capabilities within an emerg-
ing technological paradigm, incumbent firms frequently

need to leverage their external networks to source new
technology. Networks can provide access to knowledge
and resources that are not readily available via market
exchanges (Gulati 1999, Gulati et al. 2000).
Although the resource-based view tends to focus on

the importance of the internal asset base of the firm,
researchers have recently posited that network relation-
ships may allow a firm to leverage unique resource
combinations. Dyer and Singh (1998) highlight relation-
specific assets, knowledge-sharing routines, complemen-
tary resources and capabilities, as well as effective
governance as antecedents to an interorganizational com-
petitive advantage. The ability to leverage external net-
works to adapt to a rapidly changing environment is
emphasized by Teece et al. (1997) and Eisenhardt and
Martin (2000) as one possible manifestation of a dy-
namic capability. Strategic alliances and acquisitions of
new technology ventures are generally considered to
be alternatives to the external sourcing of technologi-
cal knowledge by incumbent firms (Hill and Rothaermel
2003, Higgins and Rodriguez 2006, Vanhaverbeke et al.
2002). Therefore, we investigate how each type of exter-
nal sourcing strategy affects an existing firm’s innovative
output.

Strategic Alliances. Strategic alliances are voluntary
arrangements between firms to exchange and share
knowledge and resources with the intent of developing
processes, products, or services (Gulati 1998). It is not
surprising that strategic alliances are often highlighted as
an important mechanism used by firms to access exter-
nal technology. Indeed, alliances have become common-
place as firms try to absorb or learn capabilities and
knowledge from other firms (Ahuja 2000, Hagedoorn
1993, Powell et al. 1996, Rothaermel 2001). There are
multiple pathways by which a firm’s alliances with
providers of new technology can affect its innovative
output. Among other benefits, alliances enable partners
to share technological knowledge, take advantage of
scale economies in research, and leverage complemen-
tary assets (Teece 1992).
Extant empirical research provides evidence for the

idea that strategic alliances enhance innovative output.
With regard to new technology ventures, prior studies
demonstrate that strategic alliances increase patent and
new product development rates for biotechnology start-
ups (Deeds and Hill 1996, Shan et al. 1994) and predict
innovation rates in the semiconductor as well as in the
microcomputer industry (Rothaermel et al. 2006, Stuart
2000). Considering incumbent firms rather than start-
ups, Ahuja (2000) examines the position of chemical
firms within the industry’s network and finds that direct
network connections have a positive relationship with
innovative output. Thus, we suggest that an incumbent
firm’s strategic alliances with the providers of new tech-
nology, like research universities and new technology
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ventures, have a positive effect on the firm’s innovative
output.

Hypothesis 3A. A firm’s innovative output is a pos-
itive function of its alliances with new technology pro-
viders.

Acquisitions. Acquisitions are an increasingly impor-
tant strategic tool for attaining the external technologi-
cal know-how to supplement internal R&D efforts in a
timely manner (Chesbrough 2003, Ranft and Lord 2002,
Vanhaverbeke et al. 2002). We make the assumption
that acquisitions are network-level mechanisms, primar-
ily because the targets acquired by the pharmaceutical
firms within our sample are, for the most part, similar
to the firms with which they ally. That is, the major-
ity of the acquired firms are small biotechnology firms
focused predominantly on basic research, drug discov-
ery, and early stage development. Acquisitions of small
technology ventures are not idiosyncratic to biotechnol-
ogy because they are commonplace in many other high-
technology industries (Vanhaverbeke et al. 2002).
Within the biotechnology industry, large pharmaceu-

tical firms often use acquisitions to facilitate innovation
(Galambos and Sturchio 1998). Higgins and Rodriguez
(2006) find that to overcome declining internal R&D
productivity, many pharmaceutical firms have success-
fully innovated by acquiring biotechnology ventures. For
example, Hoffman-La Roche, DuPont, and Schering-
Plough all began to engage in serial acquisitions of
small, specialized biotechnology firms in the mid-1980s
instead of forming alliances (Galambos and Sturchio
1998).

Hypothesis 3B. A firm’s innovative output is a posi-
tive function of its acquisitions of new technology firms.

Interactions Across Levels—Complements or
Substitutes?
To challenge the assumption of independence across lev-
els of analysis, we shift our analysis to an investigation
of interactions across levels and their effects on innova-
tion. Specifically, we pursue the question of whether the
interactions across levels are complementary or substitu-
tive in nature. Two activities are said to be complements
if the marginal benefit of each activity increases in the
presence of the other activity. For example, one would
suggest that cardiovascular exercise is more effective in
reducing the risk of heart disease if combined with a
low-cholesterol diet, and vice versa. On the other hand,
two activities are said to interact as substitutes if the
marginal benefit of each activity decreases in the pres-
ence of the other activity. Here, one would suggest that
cardiovascular exercise and pursuing a low-cholesterol
diet are substitutes in achieving a lower risk of heart dis-
ease. Note that although cardiovascular exercise can still

have an absolute positive effect on lowering the risk of
heart disease, over and above a low-cholesterol diet, the
marginal effect of cardiovascular exercise is diminished
in the substitution scenario, and vice versa.1 Given the
dearth of prior theoretical and empirical research per-
taining to the locus of innovation antecedents across lev-
els, we advance both a complementary and a substitutive
hypothesis in a competing fashion.

Interactions Across Levels—Complements

Interaction Between Individual- and Firm-Level Ef-
fects. A positive interaction between individual- and
firm-level effects is likely, considering that the level of
R&D capability is a function of prior related knowl-
edge (Cohen and Levinthal 1989, 1990). Relevant prior
knowledge allows the firm to recognize the value of
new information and to exploit it for commercial ends.
In the pharmaceutical industry, the primary source of
such knowledge is located upstream in the value chain,
residing within research universities and new biotechnol-
ogy ventures. Existing pharmaceutical companies must
thus possess the requisite intellectual human capital to
gain access to this research community, assimilate the
new knowledge, and subsequently apply it to commer-
cial ends.
We posit that an increase in the level of intellec-

tual human capital results in a commensurate increase
in R&D capability. Likewise, a firm that has signifi-
cant R&D capability is more likely to experience an
increase in the effectiveness of its intellectual human
capital due to better research facilities, more knowledge-
able colleagues, and cultural norms and processes that
are more conducive to innovation (Hitt et al. 1991). As
an example, Groysberg et al. (2004) find that when star
financial analysts switched firms, both the worker and
new employer saw a decrease in short-term performance.
The effect was stronger when the star analyst switched
from a higher-performing firm to a lower-performing
one. This indicates that there are important firm-level
complementary or supporting assets and processes that
are required for an individual employee to realize a high
level of performance. In a similar fashion, Lacetara et al.
(2004) show that the hiring of star scientists positively
interacts with firm-level policies, capabilities, routines,
and people, thus indicating a potential complementar-
ity between individual- and firm-level factors. Taken
together, these observations lead us to suggest that the
complex interactions between individual- and firm-level
capabilities have the potential to transform resources
obtained in strategic factor markets (e.g., the recruitment
of scientists) into valuable, rare, inimitable, and non-
substitutable resource combinations that can form the
basis of a firm-level innovation advantage (Barney 1986,
1991; Lacetera et al. 2004).
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Interaction Between Individual- and Network-Level
Effects. We postulate that scientists positively moder-
ate the effects of alliances and acquisitions on a firm’s
innovative output. Stuart et al. (2007) assert that within
the realm of biotechnology firms, the breadth of the
external networks of academic scientists employed by a
firm facilitates the organization’s ability to identify and
incorporate pertinent university research. The presence
of technological gatekeepers and boundary spanners can
help offset different coding schemes between organi-
zations, specifically between academic institutions and
corporate R&D laboratories, thereby facilitating com-
munication and knowledge transfer between organiza-
tions (Allen and Cohen 1969, Tushman and Katz 1980).
The effect of this gatekeeping and boundary spanning
is particularly important to firms attempting to innovate,
because the tacit nature of many new discoveries often
makes it necessary for the inventing scientist to assist in
the firm’s commercialization process (Stuart et al. 2007).
Due to their social and professional embeddedness in

the scientific community, a pharmaceutical company’s
scientists are critical in evaluating the quality and poten-
tial fit of research that is conducted in universities and
biotechnology ventures, and thus play a key role in
directing the large pharmaceutical companies towards
promising alliance partners (Liebeskind et al. 1996).
This is an especially important task given the fact that
across the world hundreds of universities and more than
2,000 biotechnology ventures are active in some area of
biotechnology research (BioScan, diverse years).
The interaction between the level of intellectual hu-

man capital and the effect of R&D acquisitions on inno-
vation is emphasized by research showing that if an
acquiring firm has information relevant to the value of
the target’s research, which is often accurately evaluated
by the firm’s scientists, there is not only a greater like-
lihood of success, but also a greater probability that this
knowledge may allow the firm to overcome some of the
valuation difficulties that generally plague acquisitions
(Higgins and Rodriguez 2006).

Interaction Between Firm- and Network-Level Effects.
Without sufficient internal research capability developed
at the firm level, firms are not likely to recognize im-
portant developments outside of their existing compe-
tencies, and this may limit their ability to innovate
(Cohen and Levinthal 1990). Prior empirical research
indicates that a level of commonality between the firm’s
internal research capability and external research may
be necessary for successful knowledge transfer (Lane
and Lubatkin 1998). Remember, alliances are dyadic
exchanges between organizations searching for diverse
sets of knowledge (Gulati et al. 2000). Moreover, it
has been demonstrated that pharmaceutical firms pos-
sess an informational advantage over capital markets in
assessing the research quality of biotechnology start-ups

(Lerner et al. 2003), thus creating a synergistic effect
between R&D capability and alliances and acquisitions.

Hypothesis 4. Antecedents to innovation located at
the intersections between the individual and the firm
level (H4A), between the individual and the network
level (H4B), and between the firm and the network level
(H4C) complement one another such that interactions
across levels are positive, and thus increase a firm’s
innovative output.

Interactions Across Levels—Substitutes
In juxtaposition to the prior hypothesis, we propose that
the different mechanisms to advance innovation across
individual, firm, and network levels are substitutes for
one another. This implies that the simultaneous pur-
suit of innovation across multiple levels would actu-
ally reduce a firm’s innovation output, at least at the
margin. The theoretical foundation for this argument is
based on the fact that investments in the various inno-
vation antecedents tend to be path dependent, and as
such, early decisions affect future outcomes (Dierickx
and Cool 1989, Cohen and Levinthal 1990). Moreover,
these investments are predominantly undertaken to attain
the similar end of innovation, and thus the different
innovation antecedents may exhibit some element of
equifinality. In support of this idea, Cockburn et al.
(2000) demonstrate that although initial conditions were
an important factor influencing the adaptation of phar-
maceutical firms to science-driven drug discovery, the
firms also exhibited significant variance in their strategic
choices and the subsequent speed of adaptation.
From a manager’s perspective, firm innovation can be

seen as a constrained optimization problem. In high-
technology industries, which are often characterized by
short time horizons, firms face not only limited finan-
cial resources, but perhaps more important, limited man-
agerial resources. While all production decisions can be
understood as constrained optimization, this problem is
especially salient when different innovation mechanisms
can be substitutes for one another. Using them in tan-
dem might result in decreased innovative output at the
margin. Therefore, a firm attempting to innovate might
need to choose between different innovation antecedents
at different levels in a discriminating fashion.
The different innovation antecedents across multiple

levels can be seen as distinct, strategic alternatives, and
thus as substitutes on the path to attaining firm-level inno-
vation. As an example, Pennings and Harianto (1992)
analyzed the U.S. banking industry’s attempt to imple-
ment home banking, and found that the propensity of
a firm to choose one innovation mechanism over oth-
ers was history dependent in the sense that the choice
was determined, to a large extent, by the firm’s accumu-
lated skills in a specific mechanism. The authors sug-
gest that some computer, banking, and pharmaceutical
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firms have chosen to innovate through internal corpo-
rate ventures, while other organizations have based their
business model on innovation through either acquisitions
or alliances. The pharmaceutical firm Merck has histor-
ically chosen to build its research capabilities internally,
whereas Hoffman-La Roche and Eli Lilly have been
more prolific in their use of acquisitions and alliances
to innovate (Galambos and Sturchio 1998). Thus, firms
make significant investments in their chosen mode of
innovation because there are fundamental differences
between the underlying innovation mechanisms.
It is important to emphasize that firms frequently dis-

criminate between these strategic alternatives because
of tension between these different modes of innovation
(Pennings and Harianto 1992, Vanhaverbeke et al. 2002).
The tension between these alternatives is born from the
fundamentally different set of skills and capabilities that
must be developed for a firm to effectively innovate
along a particular path. By using one innovation mech-
anism repeatedly over time, firms learn by doing, and
thus build up competencies in that specific innovation
mechanism (Levitt and March 1988). Some firms have
become proficient in recruiting and retaining star sci-
entists because they have learned how to address the
surrounding human resource issues (Galambos and Stur-
chio 1998, Zucker and Darby 1997b). By contrast, other
firms have built firm-level R&D capabilities through
an ongoing investment strategy (Helfat 1994a, b). Fur-
thermore, some firms have developed alliance capa-
bilities through learning by doing. This strategy often
proves successful because it allows for the superior selec-
tion of alliance partners, as well as the contracting,
monitoring, managing—and, if necessary—exiting of
alliances (Anand and Khanna 2000, Kale et al. 2002,
Rothaermel and Deeds 2006). However, other firms have
learned superior acquisition and integration capabilities
by engaging in multiple acquisitions over time (Haleblian
and Finkelstein 1999, Hayward 2002). Taken together,
these observations indicate that firms prefer to leverage
the innovation mechanism in which they have built up
some competence (Pennings and Harianto 1992). This
idea implies that exploitation of the expertise in the pre-
ferred innovation antecedent drives out exploration of
alternative innovation mechanisms (Levinthal and March
1993), and thus can lead to competency traps (see Levitt
and March 1988).
By developing expertise in certain innovation mecha-

nisms, switching costs between the different mechanisms
can be substantial, and thus make the use of more than
one mechanism cost prohibitive (Levinthal and March
1993). Switching costs are illustrated by the detrimental
effects that substituting disparate modes of innovation
can have on managerial perceptions and organizational
culture. For example, managers may perceive that a sig-
nificant investment in a network activity is intended to

take the place of firm-level spending on R&D or intel-
lectual human capital (Hitt et al. 1991). Additionally, a
firm’s acquisitions could not only interrupt the R&D pro-
cess, but also alter an organizational culture focused on
innovation, thus lowering an employee’s incentive to fol-
low through with the innovation process. Indeed, acqui-
sitions were found to reduce both R&D expenditures and
innovation outputs, thus pointing towards a substitution
effect (Hitt et al. 1990).
Prior research also indicates that different methods

of innovating are often substituted for each other only
when the current mode of innovation is determined to
be ineffective. As an example, Higgins and Rodriguez
(2006) find that firms that are experiencing deterioration
in internal R&D productivity are more likely to engage
in an acquisition strategy to augment innovation efforts.
Similarly, firms may use one mode of innovation to com-
pensate for a lack of experience in using another mode
(Bower 2001). For example, the sharing of information
and R&D personnel that often accompanies alliances
can serve to reduce the need to invest in internal R&D.
Alliances with universities can also provide a firm with
ancillary research services that would otherwise need to
be developed internally (George et al. 2002). Indeed,
the authors find that firms with ties to universities have
lower R&D expenditures than those without such ties.
Taken together, these observations suggest that different
innovation antecedents across multiple levels of analysis
may substitute for one another.

Hypothesis 5. Antecedents to innovation located at
the intersections between the individual and the firm
level (H5A), between the individual and the network
level (H5B), and between the firm and the network level
(H5C) substitute for one another such that interactions
across levels are negative, and thus decrease a firm’s
innovative output.

Methods
Research Setting
We chose the global pharmaceutical industry to empiri-
cally test the proposed multilevel theoretical model for a
number of reasons. The need for pharmaceutical firms to
innovate is illustrated by the following trends, all in con-
stant 1999 U.S. dollars (Higgins and Rodriguez 2006):
Total R&D expenditures have grown from $6.8 billion in
1990 to $21.3 billion in 2000 (17% of sales); new drug
development costs have increased from $231 million
to $802 million between 1990 and 2000; and average
sales per patented drug have fallen from $457 million in
1990 to $337 million in 2001. Moreover, emergence of
biotechnology presented a new technological paradigm
with respect to drug discovery and development for
incumbent pharmaceutical companies (Pisano 1997).
The emergence of a new technological paradigm pro-

vides a natural laboratory for organizational researchers
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because they can then observe when and how the
existing firms have built innovation capabilities. Phar-
maceutical drug discovery within the traditional chem-
ical paradigm is based on random screening, whereas
biotechnology is informed by a more science-driven ap-
proach that includes genetic engineering, genomics, and
molecular biochemistry, among other disciplines. The
scientific breakthroughs underlying biotechnology, such
as recombinant DNA (rDNA) and hybridoma technol-
ogy, were accomplished in the mid-1970s. The first new
biotechnology drugs reached the market for pharmaceu-
ticals in the 1980s.
In their attempts to build innovative capabilities in

biotechnology, incumbent pharmaceutical firms made
extensive use of all of the innovation mechanisms de-
scribed earlier. Pharmaceutical incumbents have made
a substantial investment in human capital, especially
in the recruitment of star scientists (Zucker and Darby
1997a, b). The pharmaceutical industry also exhibits one
of the highest R&D intensities because firm performance
depends on continuous innovation through discovery and
development of proprietary drugs, which creates patent
races, temporary monopolies, and winner-take-all sce-
narios (Arthur 1989). In addition, the biotechnology in-
dustry has been identified as having one of the highest
alliance frequencies (Hagedoorn 1993) and as an indus-
try where firms outsource R&D through acquisitions
(Higgins and Rodriguez 2006). Considering these fac-
tors, we submit that the global pharmaceutical industry
is an appropriate setting to test the proposed multilevel
theoretical model predicting innovation.

Sample
In an effort to limit a potential survivor bias when draw-
ing our sample, we began our data collection process
by compiling a list of all pharmaceutical firms alive as
of 1980 based on standard industry classification (SIC)
reports and a variety of industry publications.2 Through
this process, we identified 93 incumbent pharmaceutical
firms worldwide. We defined an incumbent pharmaceuti-
cal firm as a firm that focuses on human therapeutics and
was founded prior to the emergence of biotechnology
in the mid-1970s. The pharmaceutical companies in the
sample, like Fujisawa (Japan), Novartis (Switzerland),
or Merck (United States), are generally large enterprises
with an emphasis on proprietary drug discovery and
development.
In a second step, we constructed a detailed “family

tree” for each of these 93 firms for the 1980–2001 time
period. We used multiple industry publications to con-
struct the family tree from 1980 onwards, including Dun
and Bradstreet’s “Who Owns Whom?” and annual Stan-
dard & Poor’s Industry Reports. Through this method,
we identified 12 horizontal mergers among the pharma-
ceutical firms. When a horizontal merger took place, we
combined the past data of the two merging firms, and

tracked the combined entity forward.3 Thus, the sample
for final analysis consisted of 81 firms.4

We tracked annual data for each of the 81 sample
firms, beginning in 1980 until the end of 2001 (81 ×
22= 1!782 firm-year observations). We chose our study
period to begin in 1980, which was the year when the
commercialization of biotechnology began in earnest.
This increase in commercialization activity can partly
be explained by three important events that occurred in
1980 (Stuart et al. 1999, p. 323): (1) the phenomenal
success of Genentech’s IPO, the first public biotech-
nology firm, (2) the passage of the Bayh-Dole act,
which sanctioned university patenting of inventions that
resulted from federally funded research programs; and
(3) the decision of the Supreme Court that life forms
can be patented.5 In addition, the Cohen-Boyer patent
(U.S. Patent 4,237,224), disclosing recombinant DNA,
was granted to Stanford University in 1980, thereafter
allowing nonexclusive license to this breakthrough tech-
nology for a nominal fee.
It is important to note that the 81 sample firms ac-

counted for the vast majority of the sales in the global
pharmaceutical industry. Tracking detailed pharmaceuti-
cal sales is difficult because firms generally do not report
sales differentiated by industrial sector. Nonetheless, we
were able to track the detailed pharmaceutical sales of 35
sample firms that were not diversified outside pharma-
ceuticals. These 35 focused pharmaceutical companies
represent only 38% of the initial sample, but accounted
for 69% of the total sales for pharmaceuticals world-
wide (IMS Health 2003). We are fairly confident that
the remaining 46 firms account for a minimum 20% of
pharmaceutical sales given the oligopolistic structure of
this industry. These data suggest that the sample drawn
for this study is indeed representative of the global phar-
maceutical industry.

Dependent Variable

Innovative Output. The dependent variable for this
study is the innovative output of pharmaceutical firms
within biotechnology. We followed prior research that
measured innovative output by a firm’s patents (e.g.,
Ahuja 2000, Hagedoorn and Schakenraad 1994, Hen-
derson and Cockburn 1994, Owen-Smith and Powell
2004, Shan et al. 1994, Stuart 2000). To specifically
assess the pharmaceutical firm’s innovative performance
in biotechnology, we proxied their innovative output by
the number of biotechnology patent applications granted
in each year during the 1980–2001 study period, while
explicitly controlling for lagged biotechnology patents
and for nonbiotechnology patents.
Relying on patent applications granted is the pre-

ferred choice, because it provides a closer link between
the timing of the invention and its recording (Hall
et al. 2000). Based on the population of biotechnology
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patents, a three-year average time lag exists between the
date that patents are applied for by the inventing firm and
the date when they are granted by the U.S. Patent and
Trademark Office (U.S. PTO). In addition, the estimated
time lag between the date of a completed invention and
the patent application date is no more than two to three
months (Darby and Zucker 2003). Because the U.S. PTO
only records patent application dates when patents are
granted, we obtained its most recent report including
patent data until the end of 2004. The time series for
this study ends in 2001 by design, thus attenuating any
potential right truncation effect.
Research indicates that patents represent not only an

important measure of innovative output, but also are
an externally validated measure of technological novelty
(Ahuja 2000, Griliches 1990, Henderson and Cockburn
1994). Additionally, patents have been shown to be
critical to success in the pharmaceutical industry and
are closely correlated with other performance measures,
such as new product development, profitability, and mar-
ket value (Comanor and Scherer 1969, Henderson and
Cockburn 1994). The reliability of patent count data
has been established empirically because prior research
demonstrates that patent count data are highly correlated
with citation-weighted patent measures, thus proxying
the same underlying theoretical construct (Hagedoorn
and Cloodt 2003, Stuart 2000). The bivariate correla-
tion between patent counts and citation-weighted patents
has been shown to be above 0.77 "p < 0#001$ in the
pharmaceutical industry (Hagedoorn and Cloodt 2003),
which is especially relevant for this study, and above
0.80 (p < 0#001) in the semiconductor industry (Stuart
2000), indicating some generalizability of this assertion.
In sum, a pharmaceutical firm that patents heavily in
biotechnology can be seen as building innovation capa-
bilities within a new technological paradigm.
The source for the patent data was the Technology

Profile Report maintained by the U.S. PTO. Due to gen-
erous support from the U.S. PTO, we obtained detailed
data on the complete population of all biotechnology
patents awarded to the global pharmaceutical compa-
nies in this sample annually.6 The average pharmaceuti-
cal firm in our sample was granted approximately seven
biotechnology patents per year.
It may be argued that the patent data imply a bias

in favor of U.S. companies; however, the patent liter-
ature, especially with respect to biotechnology patents,
suggests otherwise. First, the United States represents
the largest market worldwide for biotechnology, and
thus it is almost compulsory for firms to first patent in
the United States before patenting in any other coun-
try (Albert et al. 1991). Second, firms that are active in
biotechnology have a strong incentive to patent in the
United States, because intellectual property protection
has been consistently supported by U.S. courts (Levin
et al. 1987).

Independent Variables

Intellectual Human Capital and Star Scientists. Focus-
ing on entrepreneurial biotechnology ventures, Zucker,
Darby, and their colleagues were among the first to cre-
ate a measure to proxy star scientists (Zucker and Darby
1997b; Zucker et al. 1998, 2002a). They identified a set
of 327 star scientists based on their outstanding pro-
ductivity up until April 1990. The primary selection
criterion was the discovery of more than 40 genetic
sequences as reported in GenBank (1990), a world-
wide directory of all articles reporting newly discov-
ered genetic sequences. Following this early time period,
Zucker and colleagues identified stars as scientists that
had published 20 or more articles, each reporting one
or more genetic-sequence discoveries. These 327 stars
constituted only 0.75% of the population of biotechnol-
ogy scientists, but accounted for 17.3% of all the pub-
lished articles. A star scientist, therefore, published more
than 23 times as many articles as the average scientist.
Recently, Lacetera et al. (2004) identified a star scientist
as someone whose three-year moving average of annual
publications was greater than five for at least one year.
To be conservative, we applied a more stringent def-

inition of stardom than either Zucker et al. (1997b) or
Lacetara et al. (2004). We constructed our star measure
as follows. We searched the ISI Science Citation Index
database to identify academic journal articles published
between 1980 and 2004 that met the following criteria:
(1) had a keyword related to science research (excluding
social science research and nonhuman focused research,
e.g., agricultural or veterinarian), and (2) could be unam-
biguously connected with one of the pharmaceutical
firms in the sample, given the necessity of assuring that
each of the authors was affiliated with a sample firm.
From the population of over 480,000 academic journal
articles, we collected the following information: author’s
name, author’s affiliations, journal name, article title,
keywords, publication year, number of times cited. Note
that our time period to identify stars is three years longer
than the study period. This allows us to account for a
rising star effect to some extent, an issue that is partic-
ularly pertinent towards the end of the study period due
to the necessary right censoring inherent in any study
attempting to capture a dynamic phenomenon.
Once we completed the process of extracting the infor-

mation for the 480,000 journal articles for each pharma-
ceutical firm, we compiled a list of total authors based
on their publication record and aggregate times cited.
This query yielded approximately 135,000 authors who
published an average of 3.8 articles and were cited an
average of 66.4 times. We then tied each author back
to the pharmaceutical firms in our sample based on the
authors’ affiliations as indicated in the journal article(s).
Thus, the total number of a firm’s scientists who pub-
lished in academic journals was our proxy for a firm’s
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intellectual human capital (Scientists %total&). The aver-
age firm in the sample employed 214 publishing research
scientists per year.
Next, based on the distributions of citations and publi-

cations, we identified star scientists from the population
of scientists using three different and increasingly more
stringent approaches. The first method identified 2,392
“publication stars:” scientists who published, on aver-
age, more than 27 papers during the 25-year period,
1980–2004 (z-score > 3#0, or three standard deviations
above the mean). The second approach yielded 1,570
“citation stars:” scientists whose publications had been
cited at least 847 times (z-score> 3#0). Finally, our last
approach was to identify researchers that were both pub-
lication and citation stars. In this intersection, we identi-
fied 851 star scientists. The 851 stars are less than 0.65%
of the total population of scientists, but produced 15.2%
of all publications and accrued 27.3% of all citations.
This implies that the average star scientist from this data
set published more than 25 times as many articles and
is cited more than 45 times as often as the average sci-
entist. Because applying both a publication and citation
filter is a fairly stringent and thus conservative approach
to identifying a star, we used it as our proxy for star sci-
entists (Star Scientists).7 This process also implies that
the difference between total scientists and star scientists
is our proxy for nonstar scientists, which we insert in the
regression analysis to isolate the effect of star scientists
on innovative output more fully. The average pharma-
ceutical firm employed about 17 star scientists and 197
nonstar scientists in a given year over the study period.
To accurately connect scientists to pharmaceutical

firms, it was important to establish a link between the
point in time when a scientist was employed by a phar-
maceutical firm and the resulting intellectual property
(IP) disseminated in a journal publication. First, we fur-
ther investigated the publication time lag between initial
submission and appearance of a journal article in the
natural sciences. In stark contrast to the social sciences,
where the time lag between initial article submission
and publication in a journal can take several years, the
initial submission to publication lag in the natural sci-
ences is rather short; it is estimated to range, on the
average, from three to six months (Greene 1987, Murray
and Stern 2004).8

Second, the issue of scientist mobility is critical to
our analysis. Some further analysis reveals that scien-
tists within the pharmaceutical industry, however, do not
change employers frequently. Based on the propensity
to switch employers for all of the over 135,000 scien-
tists in the sample, we found that the average nonstar
scientist has worked for only 1.3 pharmaceutical firms
(standard deviation = 0#9) during the 22 years of our
analysis, while the average star scientist has worked for
3.4 firms (standard deviation= 1#8). This roughly relates

to a star scientist changing jobs every 6.5 years, or about
three job changes during our study period.
The third and most critical issue concerns the accurate

link between the locus of IP creation and the locus of
IP appropriation. For example, in the social sciences it
is the norm that researchers note their current employer
as the organization of affiliation on a journal publica-
tion, even when the IP was created while employed by
a different institution. The norms associated with pub-
lishing in the social sciences, however, differ signifi-
cantly from those of the natural sciences. Here, based
on interviews with natural scientists, we found that each
author is required to put down the organization where
the IP was generated as the affiliation on journal arti-
cles rather than his/her current employer. The question
of who owns the IP is fairly straightforward in the natu-
ral sciences because each scientist is required to keep a
detailed research log documenting his or her daily activ-
ities, research results, etc. For example, if Merck were to
hire a newly minted PhD graduate, the first few publica-
tions that result from the person’s dissertation research
would be published under the imprimatur of his/her
degree-graduating university, rather than under Merck’s
name. This process also implies that if a star moves, for
example, from Lilly to Pfizer, all the work she or he has
done at Lilly will be published under Lilly’s name, even
if the publication date of the article coincides with the
star being on Pfizer’s payroll. Here, the current employer
would only be mentioned in a footnote, for example, as
the current mailing address of the author. All subsequent
research where the IP is generated at Pfizer’s labs will
be published under Pfizer’s name. This publication norm
in the natural sciences allows us to track articles and
connect them to the locus of IP creation and IP appro-
priation with fairly good accuracy, because the two loci
overlap significantly.9 Taken together, neither publica-
tion time lags, mobility of scientists, nor concerns about
IP appropriation are likely to introduce any significant
error variance.

R&D Capability. Following prior research (Rothaer-
mel and Hill 2005), we proxied a pharmaceutical firm’s
R&D capability by its R&D expenditures, while explic-
itly controlling for firm revenues. Proxying R&D capa-
bility by R&D expenditures is preferred over R&D
intensity (R&D expenditures divided by revenues), be-
cause in the latter measure, significant uncertainty exists
as to whether any observed effects on innovation are due
to the numerator, as hoped for, or due to the denomi-
nator. We obtained the financial data used in this study
from a number of sources, including Compustat, Datas-
tream, and FIS Mergent. All financial variables are infla-
tion adjusted in constant 2000 U.S. dollars.

Biotech Alliances. To document the alliances that the
pharmaceutical firms entered with providers of bio-
technology research, we tracked each firm’s alliances
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with universities, research institutions, and biotechnol-
ogy firms. Moreover, we content analyzed each alliance
description to ensure that the focal alliance indeed per-
tained to the new biotechnology paradigm. To ensure
accuracy and completeness of the alliance data, we used
various issues of the BioScan industry directory and
the ReCap database provided by Recombinant Capital.10

The average sample firm entered three alliances per year
with providers of biotechnology knowledge.

Biotech Acquisitions. Following Higgins and Rodri-
guez (2006), among others, we used the SDC Platinum
database, published by Thomson Financial, to identify
the number of biotechnology acquisitions a pharmaceu-
tical firm had consummated during the study period.
Here, we studied each acquisition description in detail
to ensure that the focal acquisitions were indeed targeted
toward the sourcing of R&D. The average pharmaceuti-
cal firm in the sample acquired about one biotechnology
firm every two years.

Control Variables

Lagged Biotech Patents. We lagged the dependent
variable, biotechnology patents, by one time period, and
included it as a right-hand side variable. Inserting a
lagged dependent variable provides for a conservative
estimation of the other regressors, and allows us to con-
trol for a potential specification bias that can arise from
unobserved heterogeneity (Jacobson 1990). Moreover,
lagged biotechnology patents can also be interpreted as
a proxy for firm size in biotechnology.

Nonbiotech Patents. To further reduce the threat of
unobserved heterogeneity when using biotechnology
patents as the dependent variable, it is critical to con-
trol for nonbiotechnology patents to avoid spurious find-
ings, because firms that patent heavily per se might also
patent heavily in biotechnology and vice versa. Thus, we
included the number of nonbiotechnology patent appli-
cations granted per year as a control variable (Non-
biotech Patents). These data were obtained from the
U.S. PTO. The average pharmaceutical firm was granted
approximately 80 nonbiotechnology patents per year
during our study period.

Firm Merged. Over the last two decades, the pharma-
ceutical industry was characterized by increasing con-
solidation due to horizontal mergers. To account for
this effect, we created, as described earlier, a compre-
hensive family tree to trace all firms in existence in
2002 back to their various ancestors alive in 1980. This
approach allowed us to insert a dummy variable indicat-
ing whether a sample firm was the result of a horizon-
tal merger or acquisition (1= firm merged). About 13%
of all sample firms engaged in at least one horizontal
merger or acquisition during the study period.

Pharmaceutical Firm. The global pharmaceutical in-
dustry consists of specialized companies like Glaxo-
SmithKline, Schering-Plough, or Yamanouchi, which
focus on proprietary drug discovery and development,
as well as more diversified companies, most notably
chemical companies like DuPont, Monsanto, or BASF.
A firm’s level of diversification, therefore, is likely to
influence the extent to which it attempts to innovate
within biotechnology. We controlled for the varying
degree of diversification by coding the pharmaceutical
companies as one if the company is a specialized phar-
maceutical firm (Pharma Firm), and zero otherwise.
Specialized pharmaceutical companies are firms that are
active in SIC 2834 (pharmaceutical preparations man-
ufacturing). However, if a company is active in both
SIC 2834 and SIC 2890 (chemical products manufactur-
ing), for example, it was coded zero, indicating a higher
degree of diversification. More than half of the firms
(54%) were fully specialized pharmaceutical companies.

Firm Nationality. We attempted to assess institutional
and cultural differences by coding for the nationality of
each pharmaceutical firm based on the location of its
headquarters. Thus, one indicator variable takes on the
value of one if the firm is headquartered in the United
States (U.S. Firm), the other indicator variable takes on
the value of one if the firm is headquartered in Europe
(European Firm), with an Asian location as the reference
category. The global nature of this sample is highlighted
by the fact that only 34% of the firms are headquartered
in the United States, whereas 42% are European, and the
remaining 24% are Asian (mostly Japanese). Thus, we
were able to overcome the U.S. centric bias prevalent in
prior research.

Firm Performance and Firm Size. Firm performance
and firm size have a direct bearing on a firm’s innova-
tive performance (Nohria and Gulati 1996, Schumpeter
1942). To control for these effects, we inserted a firm’s
Net Income, Total Revenues, and Total Assets into the
regression equations. Inserting total revenues as a con-
trol variable is especially relevant to isolate the effect of
R&D expenditures on patenting.

Time to First Cohen-Boyer Patent Citation. The
Cohen-Boyer patent (U.S. Patent 4,237,224), disclosing
recombinant DNA technology, represents a fundamental
and industry-changing innovation that allowed firms to
develop new drugs based on genetic engineering (Pisano
1997). The time to first citation of the Cohen-Boyer
patent in a firm’s own patents (backward patent citation)
was found to be a significant predictor of firm innova-
tion (Fabrizio 2005), and thus provides an indication of
a firm’s speed of innovation within the new technologi-
cal paradigm. As such, we included it in our regression
models as a control variable. To identify when a firm
first cited the Cohen-Boyer patent, if at all, we searched
both the U.S. PTO and the NBER patent databases (Hall
et al. 2001).
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Year Fixed Effects. Because we investigate a 22-year
time period, it is prudent to control for time-varying fac-
tors that affect all firms, including macroeconomic con-
ditions. We therefore inserted annual time dummies for
each year, with 1980 being the omitted year and thus
serving as the reference year. Such year fixed effects also
capture secular movements in the dependent variable.
Inserting year dummies is useful, because it addresses
concerns that underlying secular trends could influence
our inference by introducing a simultaneity bias in the
relationship between the dependent variable, biotechnol-
ogy patenting, and the main regressors of interest. In
addition, year fixed effects also control for any right
truncation effect that might remain in the time series.

Estimation Procedures
The dependent variable of this study, a pharmaceuti-
cal firm’s patents in biotechnology, is a nonnegative,
integer count variable. Verified by a statistical test for
overdispersion (Gourieroux et al. 1984), the negative
binomial estimation provides a significantly better fit for
the data than the more restrictive Poisson model. Neg-
ative binomial regression accounts for an omitted vari-
able bias, while simultaneously estimating heterogeneity
(Cameron and Trivedi 1986, Hausman et al. 1984).
In theory, either fixed- or random-effects specifica-

tion can be used to control for unobserved heterogeneity
(Greene 2003). We applied a Hausman specification test
(1978), and its result revealed that a random-effects esti-
mation is appropriate.11 Therefore, we applied the fol-
lowing random-effects negative binomial model:

P "nit/'$= e−(it−1 exp"'$(nit−1
i /nit−1! (1)

where n is a nonnegative integer count variable, repre-
senting each pharmaceutical firm’s patents in biotech-
nology. Thus, P "nit/'$ indicates the probability that
pharmaceutical firm i is granted n biotechnology patent
applications in year t. The application of a random-
effects negative binomial estimation addresses concerns
of heterogeneity, and enables us to include covariates
that tend to be time invariant, such as the firm’s time
to first citation of the Cohen-Boyer patent, national ori-
gin, or degree of diversification (Hsiao 2003). Moreover,
we submit that through the application of the Hausman
specification test and the resulting random-effects spec-
ification, combined with a rich set of detailed control
variables, we have effectively addressed any potential
endogeneity (Hamilton and Nickerson 2003).
Further, to interpret the results in a meaningful manner

and to reduce potential collinearity, we standardized all
independent variables before entering them into the vari-
ous regression models. We standardized the independent
variables prior to creating their cross products to test
the moderating hypotheses (Cohen et al. 2003). To com-
pensate for a potential simultaneity bias and to enhance

any causality claims, we lagged the financial measures
(net income, assets, revenues, and R&D expenditures),
as well as biotechnology alliances and biotechnology
acquisitions, by one year.

Results
Table 1 depicts the descriptive statistics and the bivariate
correlation matrix, whereas Table 2 presents the regres-
sion results for the direct effect hypotheses (H1 through
H3, Models 2, 3, and 4), and Table 3 provides the results
for the interaction hypotheses (H4 and H5, Models 5
and 6). We first estimated a baseline model including
the control variables only (Model 1). Each subsequent
model represents a significant improvement over the
baseline model at p < 0#01, or smaller.

Results—Direct Effect Hypotheses
The results shown in Model 2 provide support for
Hypothesis 1A, indicating that a firm’s innovative output
is a positive function of its intellectual human capital
(p < 0#001), which we proxied by a firm’s total num-
ber of research scientists that (co-)authored at least one
research article in a scientific journal.
In Hypothesis 1B, we postulate that a firm’s innova-

tive output is a positive function of its star scientists,
above and beyond any effects of the firm’s nonstar sci-
entists. To highlight the importance of explicitly control-
ling for nonstar scientists, and thus to demonstrate the
threat of unobserved heterogeneity, we first estimated
the effect of a firm’s star scientists on innovative output
without controlling for nonstar scientists (Model 3). The
results in Model 3 reveal that a firm’s star scientists are
a positive and statistically significant predictor of inno-
vative output (p < 0#01). This finding would lead us to
claim support for the hypothesis that a firm’s innova-
tive output is a positive function of its star scientists. In
Model 4, however, we inserted the number of nonstar
scientists to more fully isolate any star scientist effect.
The results demonstrate that it is not the star scientists
that are a significant predictor of innovative output, as
hypothesized in H1B, but rather it is the firm’s nonstar
scientists that are a positive and statistically significant
predictor of a firm’s innovative output (p < 0#05). We
thus reject Hypothesis 1B. This finding has two impor-
tant implications.
First, it demonstrates the seriousness of the threat of

unobserved heterogeneity. Had we not explicitly con-
trolled for a firm’s nonstar scientists, we would have
accepted the hypothesis that stars are a significant pre-
dictor of innovative output, and thus committed a serious
Type I error—accepting the research hypothesis when in
reality the null hypothesis is true. Second, a closer look
at the results presented in Models 3 and 4 reveals a fully
mediated relationship between a firm’s star scientists
and its innovative output. This relationship is implied,
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Table 2 Regression Results of Random-Effects Negative Binomial Estimation Predicting Biotech Patenting

Model 1 Model 2 Model 3 Model 4 Post-hoc analysis

Standard Standard Standard Standard Standard
Direct effects models Beta error Beta error Beta error Beta error Beta error

Constant −0!8642 (0.7147) −0!7957 (0.7353) −0!4495 (0.7221) −0!7138 (0.7392) −0!8079 (0.7381)
Year is 1981 0!2655 (0.7429) 0!3590 (0.7643) −0!0423 (0.7484) 0!2654 (0.7694) 0!5861 (0.7696)
Year is 1982 0!7668 (0.7353) 0!8162 (0.7569) 0!4277 (0.7424) 0!7223 (0.7621) 1!0335 (0.7620)
Year is 1983 0!5977 (0.7381) 0!6559 (0.7598) 0!2708 (0.7448) 0!5665 (0.7644) 0!8701 (0.7645)
Year is 1984 0!9750 (0.7306) 1!0380 (0.7515) 0!6511 (0.7365) 0!9472 (0.7563) 1!2339 (0.7557)
Year is 1985 0!7458 (0.7328) 0!7792 (0.7550) 0!3984 (0.7397) 0!6923 (0.7593) 0!9609 (0.7590)
Year is 1986 0!9618 (0.7301) 0!9688 (0.7516) 0!5849 (0.7370) 0!8782 (0.7564) 1!1340 (0.7555)
Year is 1987 1!1812 (0.7262) 1!2058 (0.7462) 0!8390 (0.7323) 1!1193 (0.7506) 1!3622∗ (0.7498)
Year is 1988 1!1512 (0.7259) 1!1527 (0.7454) 0!7760 (0.7321) 1!0601 (0.7506) 1!2845∗ (0.7487)
Year is 1989 1!0880 (0.7251) 1!1138 (0.7455) 0!7397 (0.7312) 1!0256 (0.7501) 1!2365∗ (0.7487)
Year is 1990 1!4142∗ (0.7198) 1!3710∗ (0.7391) 1!0222 (0.7267) 1!2871∗ (0.7434) 1!4764∗ (0.7422)
Year is 1991 1!3977∗ (0.7180) 1!3813∗ (0.7356) 1!0318 (0.7238) 1!2931∗ (0.7403) 1!4596∗ (0.7384)
Year is 1992 1!5735∗ (0.7172) 1!5306∗ (0.7343) 1!1991∗ (0.7229) 1!4485∗ (0.7383) 1!6092∗ (0.7371)
Year is 1993 1!7267∗∗ (0.7173) 1!6621∗ (0.7345) 1!3278∗ (0.7238) 1!5773∗ (0.7390) 1!7319∗∗ (0.7375)
Year is 1994 1!9339∗∗ (0.7162) 1!8833∗∗ (0.7333) 1!5635∗ (0.7224) 1!8044∗∗ (0.7370) 1!9442∗∗ (0.7363)
Year is 1995 2!1946∗∗∗ (0.7158) 2!1913∗∗ (0.7324) 1!8770∗∗ (0.7218) 2!1136∗∗ (0.7359) 2!2529∗∗∗ (0.7354)
Year is 1996 1!5918∗ (0.7153) 1!5049∗ (0.7351) 1!1961∗ (0.7229) 1!4373∗ (0.7375) 1!5590∗ (0.7381)
Year is 1997 1!9465∗∗ (0.7146) 1!8674∗∗ (0.7307) 1!5774∗ (0.7204) 1!7999∗∗ (0.7333) 1!9090∗∗ (0.7336)
Year is 1998 1!6932∗∗ (0.7163) 1!6461∗ (0.7341) 1!3466∗ (0.7221) 1!5809∗ (0.7363) 1!6621∗ (0.7370)
Year is 1999 1!7147∗∗ (0.7163) 1!6917∗ (0.7320) 1!3972∗ (0.7211) 1!6232∗ (0.7345) 1!6946∗ (0.7345)
Year is 2000 1!4924∗ (0.7168) 1!5234∗ (0.7307) 1!2557∗ (0.7208) 1!4641∗ (0.7326) 1!5291∗ (0.7327)
Year is 2001 1!3509∗ (0.7171) 1!3429∗ (0.7339) 1!0568 (0.7231) 1!2788∗ (0.7360) 1!3321∗ (0.7362)
Firm merged 0!1855∗∗∗ (0.0312) 0!1473∗∗∗ (0.0317) 0!1499∗∗∗ (0.0315) 0!1460∗∗∗ (0.0316) 0!1472∗∗∗ (0.0314)
Pharma firm −0!1404 (0.0866) −0!2480∗∗ (0.0910) −0!2195∗∗ (0.0896) −0!2520∗∗ (0.0911) −0!2179∗∗ (0.0904)
U.S. firm 0!1329 (0.0950) −0!0164 (0.1008) 0!0094 (0.0999) −0!0216 (0.1009) −0!1050 (0.1035)
European firm −0!0633 (0.0997) −0!0788 (0.1077) −0!0491 (0.1083) −0!0672 (0.1084) −0!1964∗ (0.1132)
Net income 0!0613 (0.0577) 0!0433 (0.0596) 0!0566 (0.0585) 0!0468 (0.0596) 0!0241 (0.0604)
Total assets −0!5691∗∗∗ (0.0850) −0!5189∗∗∗ (0.0885) −0!5353∗∗∗ (0.0867) −0!5220∗∗∗ (0.0877) −0!5758∗∗∗ (0.0885)
Total revenues 0!1879∗∗∗ (0.0433) 0!1849∗∗∗ (0.0433) 0!1985∗∗∗ (0.0425) 0!1889∗∗∗ (0.0431) 0!1468∗∗∗ (0.0444)
Time to first −0!6068∗∗∗ (0.0831) −0!6778∗∗∗ (0.0900) −0!6966∗∗∗ (0.0925) −0!6904∗∗∗ (0.0916) −0!6401∗∗∗ (0.0889)

Cohen-Boyer
patent citation

Nonbiotech patents 0!1608∗∗∗ (0.0404) 0!1531∗∗∗ (0.0399) 0!1546∗∗∗ (0.0396) 0!1523∗∗∗ (0.0398) 0!1547∗∗∗ (0.0398)
Lagged biotech patents 0!1703∗∗∗ (0.0164) 0!1509∗∗∗ (0.0177) 0!1565∗∗∗ (0.0178) 0!1493∗∗∗ (0.0179) 0!1497∗∗∗ (0.0174)
Scientists (total) 0!1296∗∗∗ (0.0411) 0!0938∗ (0.0418)
Star scientists 0!0775∗∗ (0.0275) 0!0484 (0.0325)
Nonstar scientists 0!0911∗ (0.0478)
R&D expenditures −0!1080∗ (0.0577) −0!0768 (0.0548) −0!1017∗ (0.0575) 0!2784∗ (0.1281)
R&D expenditures −0!0872∗∗∗ (0.0283)

squared
Biotech alliances 0!0206 (0.0206) 0!0201 (0.0205) 0!0199 (0.0205) 0!0174 (0.0207)
Biotech acquisitions 0!0464∗ (0.0246) 0!0556∗∗ (0.0236) 0!0473∗ (0.0243) 0!0480∗ (0.0245)

Log likelihood −2"587!22 −2"473!88 −2"475!23 −2"473!41 −2"467!94
Chi square 807!24∗∗∗ 831!93∗∗∗ 831!53∗∗∗ 833!34∗∗∗ 822!03∗∗∗

Improvement over 24!69∗∗∗ 24!29∗∗∗ 26!10∗∗∗ 14!79∗∗

base #$%2&

Notes. Standard errors are in parentheses; ∗p < 0!05; ∗∗p < 0!01; ∗∗∗p < 0!001.

given that inserting nonstar scientists leads to a positive
and statistically significant effect of nonstar scientists
on innovative output, while the effect of star scientists
switches from being statistically significant in Model 3
to not being statistically significant in Model 4.12 This
implies that the relationship between star scientists and
innovative output is fully mediated by nonstar scientists.
We find that R&D expenditures, our proxy for R&D

capability, are negative and statistically significant in

predicting a firm’s innovation output (p < 0#05 in
Models 2 and 4). This does not imply, however, that
R&D expenditures have an absolute negative effect on
biotechnology patenting. Rather, it may indicate that the
functional relationship between R&D expenditures and
biotech patenting could be nonlinear. When we include
the linear and squared term of R&D expenditures in a
post hoc analysis (presented in the far right column of
Table 2), we indeed see that the relationship between
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Table 3 Regression Results of Random-Effects Negative Binomial Estimation Predicting Biotech Patenting

Model 5 Model 6

Interaction effects models Beta Standard error Beta Standard error

Constant −0!3719 (0.7693) −0!5968 (0.7849)
Year is 1981 0!0224 (0.7886) 0!2377 (0.8029)
Year is 1982 0!4840 (0.7809) 0!6928 (0.7955)
Year is 1983 0!3208 (0.7836) 0!5348 (0.7985)
Year is 1984 0!7219 (0.7775) 0!9308 (0.7921)
Year is 1985 0!4507 (0.7818) 0!6590 (0.7961)
Year is 1986 0!5527 (0.7816) 0!7447 (0.7960)
Year is 1987 0!8128 (0.7759) 1!0156 (0.7902)
Year is 1988 0!7934 (0.7756) 0!9702 (0.7897)
Year is 1989 0!7589 (0.7756) 0!9634 (0.7902)
Year is 1990 0!9956 (0.7709) 1!2135 (0.7857)
Year is 1991 0!9975 (0.7691) 1!2049 (0.7844)
Year is 1992 1!1299 (0.7682) 1!3459∗ (0.7834)
Year is 1993 1!2646∗ (0.7679) 1!4863∗ (0.7837)
Year is 1994 1!4659∗ (0.7670) 1!7010∗ (0.7830)
Year is 1995 1!7952∗∗ (0.7697) 2!0355∗∗ (0.7860)
Year is 1996 1!0784 (0.7717) 1!3228∗ (0.7879)
Year is 1997 1!4904∗ (0.7643) 1!7347∗ (0.7806)
Year is 1998 1!2525 (0.7689) 1!5117∗ (0.7862)
Year is 1999 1!2695∗ (0.7625) 1!5063∗ (0.7787)
Year is 2000 1!1655 (0.7596) 1!4036∗ (0.7738)
Year is 2001 1!0027 (0.7631) 1!2502 (0.7780)
Firm merged 0!1337∗∗∗ (0.0322) 0!1284∗∗∗ (0.0329)
Pharma firm −0!2416∗∗ (0.0903) −0!2302∗∗ (0.0910)
U.S. firm −0!0565 (0.1037) −0!0469 (0.1044)
European firm −0!1026 (0.1089) −0!0996 (0.1102)
Net income 0!0602 (0.0593) 0!0685 (0.0602)
Total assets −0!5627∗∗∗ (0.0899) −0!5269∗∗∗ (0.0910)
Total revenues 0!1745∗∗∗ (0.0438) 0!1725∗∗∗ (0.0443)
Time to first Cohen-Boyer patent citation −0!6838∗∗∗ (0.0920) −0!6896∗∗∗ (0.0944)
Nonbiotech patents 0!1666∗∗∗ (0.0399) 0!1662∗∗∗ (0.0398)
Lagged biotech patents 0!1713∗∗∗ (0.0200) 0!1719∗∗∗ (0.0211)
Scientists (total) 0!2186∗∗∗ (0.0532)
Star scientists 0!0613 (0.0460)
Nonstar scientists 0!1766∗∗ (0.0656)
R&D expenditures −0!0297 (0.0615) −0!0583 (0.0653)
Biotech alliances 0!0443 (0.0347) 0!0387 (0.0355)
Biotech acquisitions −0!0265 (0.0453) −0!0376 (0.0465)
Scientists (total)×R&D expenditures −0!1141∗∗ (0.0450)
Scientists (total)×biotech alliances −0!0630∗∗∗ (0.0174)
Scientists (total)×biotech acquisitions 0!0171 (0.0149)
Star scientists×R&D expenditures −0!1037∗ (0.0613)
Star scientists×biotech alliances 0!0132 (0.0114)
Star scientists×biotech acquisitions 0!0028 (0.0107)
Nonstar scientists×R&D expenditures −0!0604 (0.0484)
Nonstar scientists×biotech alliances −0!0873∗∗∗ (0.0221)
Nonstar scientists×biotech acquisitions 0!0212 (0.0225)
R&D expenditures×biotech alliances 0!0802∗∗ (0.0320) 0!1036∗∗∗ (0.0323)
R&D expenditures×biotech acquistions 0!0556 (0.0406) 0!0568 (0.0414)

Log likelihood −2"463!73 −2"459!94
Chi square 891!99∗∗∗ 901!23∗∗∗

Improvement over base #$%2& 84!75∗∗∗ 93!99∗∗∗

Notes. Standard errors are in parentheses; ∗p < 0!05; ∗∗p < 0!01; ∗∗∗p < 0!001.

R&D expenditures and patenting is characterized by
diminishing returns, because the linear term of R&D
expenditures is positive and statistically significant (p <
0#05), whereas the squared term is negative and also
statistically significant "p < 0#001). This result is not

caused by multicollinearity, because the VIFs between
linear and squared R&D terms reach only 2.45, well
below the cutoff point of 10 (Cohen et al. 2003).
Recall that our estimation technique is a negative

binomial regression, and thus a nonlinear, exponential
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Table 4 Interpretation of Negative Binomial Regression
Results

Incidence Factor
rate ratio= change=

Beta exp(beta) IRR-1

Direct effects
Scientists (total) 0!1296∗∗∗ 1.14 0!14
Star scientists 0!0775∗∗ 1.08 0!08
Nonstar scientists 0!0911∗ 1.10 0!10
R&D expenditures 0!2784∗ 1.32 0!32
R&D expenditures −0!0872∗∗∗ 0.92 −0!08

squared
Biotech acquisitions 0!0464∗ 1.05 0!05
Biotech acquisitions 0!0473∗ 1.05 0!05

Interaction effects
Scientists (total) −0!1141∗ 0.89 −0!11

×R&D expenditures
Scientists (total) −0!0630∗∗∗ 0.94 −0!06

×bio alliances
Star scientists −0!1037∗ 0.90 −0!10

×R&D expenditures
Nonstar scientists −0!0873∗∗∗ 0.92 −0!08

×biotech alliances
R&D expenditures 0!0802∗ 1.08 0!08

×biotech alliances
R&D expenditures 0!1036∗∗∗ 1.11 0!11

×biotech alliances

∗p < 0!05; ∗∗ p < 0!01; ∗∗∗ p < 0!001!

estimation technique as explicated in Equation (1) above.
Therefore, to interpret the reported beta coefficients in
a meaningful manner, one needs to exponentiate the
respective beta value [exp")$ or e)] to obtain the inci-
dence rate ratio, holding all other variables constant (see
Long 1997, pp. 228–229; for a recent application see
Ichino and Maggi 2000).13 Table 4 provides an inter-
pretation of the direct effects and interaction effects on
biotechnology patenting. We translate beta values into
incidence rate ratios and factor changes. When com-
paring the factor changes obtained for the statistically
significant linear direct effects, we find that intellec-
tual human capital (14%) had the strongest effect on
biotechnology patenting, divided into star scientists (8%)
and nonstar scientists (10%), followed by biotechnology
acquisitions (5%).
We do not find support for Hypothesis 3A, suggesting

that a firm’s innovative output is a positive function of
its alliances with new technology providers. The results,
however, do reveal support for Hypothesis 3B, positing
that a firm’s innovative output is a positive function of its
acquisitions of new technology firms, because the coeffi-
cients for biotechnology acquisitions are positive and sta-
tistically significant (p < 0#05 or smaller in Models 2–4).

Results—Interaction Hypotheses
We propose two competing interaction hypotheses, which
we evaluate in Models 5 and 6 presented in Table 3.
In Hypothesis 4 we posit that the different innovation

antecedents across levels complement one another,
whereas in Hypothesis 5 we suggest that they substitute
for one another.
We find support for the hypothesis that a firm’s intel-

lectual human capital (proxied by its total scientists)
and a firm’s R&D capability are substitutes for one
another because the interaction between these two vari-
ables is negative and statistically significant (p < 0#01 in
Model 5). Star scientists and R&D capability also substi-
tute for one another because their interaction is negative
and significant (p < 0#05 in Model 6). When evaluat-
ing the interactions between individual- and network-
level effects, we find that a firm’s nonstar scientists and
its biotechnology alliances substitute for one another
because the interaction effect is negative and significant
(p < 0#001 in Model 6). Taken together, this implies that
individual- and firm-level effects as well as individual-
and network-level effects compensate for one another
when pursued in parallel, at least at the margin. For
example, for pharmaceutical firms with a high level of
intellectual human capital, alliances are less important
to achieve biotech patenting. Thus, new knowledge gen-
erated through research efforts by scientists may com-
pensate for new knowledge that could be gained from
external sources. This points to some level of equifinality
based on the different internal and external knowledge
sources.
When focusing on the interactions between firm- and

network-level factors, we find that a firm’s R&D capa-
bility and its biotechnology alliances complement one
another, because the interaction effects are positive and
significant in both Models 5 and 6 (p < 0#01 and
p < 0#001, respectively). Here, firm- and network-level
effects reinforce one another when pursued in parallel,
at least at the margin. For pharmaceutical companies
with a high level of R&D capability, the incremental
benefit of pursuing alliances increases biotech patent-
ing over and above simple additive effects. This finding
points to positive knowledge spillovers between an inter-
nal R&D capability and external knowledge sources, at
least for alliances.
In sum, the pattern for the interaction effect results

suggests that individual-level antecedents to innovation
(intellectual human capital, star scientists, and non-
star scientists) appear to be substitutes for firm-level
antecedents to innovation (R&D capability) as well as
for network-level antecedents (biotechnology alliances)
to innovation, thus lending support to Hypotheses (5A)
and (5B). On the other hand, firm- and network-
level antecedents (biotechnology alliances) to innovation
appear to complement one another, thus providing sup-
port for Hypothesis (4C).14

The net effects of the interactions are depicted in
Table 4, which further substantiates our claims pertain-
ing to substitutive and complementarity effects. The idea
that intellectual human capital is a substitute for firm-
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and network-level antecedents to innovation is high-
lighted by the fact that the positive direct effect of
intellectual human capital on biotechnology patenting
declines as R&D expenditures or the number of biotech-
nology alliances are increased. In particular, an innova-
tion strategy that jointly emphasizes intellectual human
capital and R&D expenditures or intellectual human cap-
ital and biotechnology alliances reduces the expected
number of biotechnology patents between 6% and 11%,
when any of the respective interaction variables is
increased by one standard deviation. On the other hand,
the joint effects of R&D expenditures and biotechnol-
ogy alliances on innovative output reinforce one another,
thus highlighting their complementary natures. In par-
ticular, the effect of R&D capability on innovative out-
put increases between 8% and 11% above and beyond
the direct effects when the number of biotechnology
alliances is increased by one standard deviation, and vice
versa.15

Results of Control Variables
Some of the results of the control variables are also
noteworthy. We assess them in Model 1, the base-
line estimation. The results indicate that firms that are
heavily engaged in patenting overall, as proxied by
their nonbiotechnology patents, are also very active in
biotechnology patenting "p < 0#001$. In addition, past
biotechnology patenting predicts future biotechnology
patenting, because the lagged dependent variable is,
as expected, positive and statistically significant "p <
0#001$. Thus, the observed effects above are not spuri-
ous due to a firm-size effect in biotechnology. Including
a variable that captures a firm’s overall inclination to
engage in the focal activity (proxied by nonbiotechnol-
ogy patents) and including a lagged dependent variable
follow the recommendations of how to control for unob-
served heterogeneity (Heckman and Borjas 1980). The
results obtained are reassuring not only because they
reduce the threat of unobserved heterogeneity, but also
because they rule out the alternative explanation that the
key independent variable findings might be caused by a
firm’s innovation strategy, which is unobservable.
With regard to the annual indicator variables, we

see that the year dummies capture a trend acceleration
and eventual deceleration in biotechnology patenting
over time. Patenting activity significantly accelerates in
the early 1990s, peaks in the mid-1990s, and slows
down somewhat towards the end of the study period.
This pattern suggests that inserting year dummies effec-
tively controls for any remaining right truncation effect.
Pharmaceutical companies that underwent a horizontal
merger or acquisition during the lengthy study period
exhibit a significantly greater number of biotechnol-
ogy patents "p < 0#001$. Larger firms, as proxied by
their total assets, appear to be laggards in biotechnol-
ogy patenting (p < 0#001). Firms with higher revenues
are more active in biotechnology patenting (p < 0#001).

This result is important, because it isolates the effect
of R&D expenditures on biotechnology patenting more
fully, and because R&D expenditures and revenues are
the two components of the frequently used R&D inten-
sity measure (Cohen and Levinthal 1989, 1990; Helfat
1994a, b, 1997). As expected, firms that take longer to
incorporate the breakthrough Cohen-Boyer patent into
their knowledge base exhibit an overall lower innovation
output "p < 0#001$. Noteworthy is the strong negative
effect of being late in citing the breakthrough Cohen-
Boyer rDNA patent: Every 2.9 years of delay lowers
the expected number of biotechnology patents by 45%.
This finding clearly highlights the imperative of being
a fast mover in this dynamic industry, where competi-
tion is characterized by winner-take-all scenarios (Arthur
1989).

Discussion
Following recent theoretical developments emphasizing
that antecedents to dynamic capabilities can either be
found at the individual, firm, and/or network levels of
analysis (Eisenhardt and Martin 2000, Teece et al. 1997,
Zollo and Winter 2002), we set out to challenge the
assumptions of homogeneity across, and independence
from, different levels of analysis commonly found in
extant unilevel research (Felin and Foss 2005, Felin and
Hesterly 2007, Klein et al. 1994, Dansereau et al. 1999).
First, we scrutinized the assumption of homogeneity
across levels of analysis by simultaneously testing the
effects of different innovation antecedents across levels,
thus explicitly controlling for alternate levels of analy-
sis. Second, we examined the assumption of indepen-
dence from different levels of analysis by testing two
competing interaction hypotheses concerning the poten-
tial complementary and substitutive nature of innovation
antecedents in the intersections across different levels of
analysis.
Taken together, the results not only demonstrate het-

erogeneity across levels of analysis, but also interde-
pendence with alternate levels of analysis. We therefore
reject both the assumption of homogeneity across levels
and the assumption of independence from alternate lev-
els of analysis. These overarching findings resulted from
attempting to answer questions pertaining to the locus
of dynamic capabilities.
Regarding heterogeneity across levels of analysis, we

find that a significant amount of variance in innovation
was explained by individual-level factors. When split-
ting a firm’s intellectual human capital into its two com-
ponents, star and nonstar scientists, we find that the
positive direct effect of intellectual human capital on
patenting can be primarily attributed to a firm’s non-
star scientists, whereas its star scientists did not exert
a significant direct effect on patenting. At first glance,
this result is somewhat surprising given that it highlights
the importance of scale in intellectual human capital,
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accomplished through a large number of rank-and-file
knowledge workers (Ashworth and Carley 2006) rather
than the primacy of elite scientists, which is empha-
sized in the few prior studies in this area (Lacetera et al.
2004; Zucker and Darby 1997a, b). This apparent ten-
sion, however, can be reconciled by the finding that non-
star scientists fully mediate the effect of star scientists
on innovative output. It appears, therefore, that the pri-
mary role of the star scientist is to help cue the firm to
potential shifts in the environment and direct it towards
promising new research areas (Kaplan et al. 2003), rather
than to facilitate its adaptation to the change itself.
The structure of Sanofi-Aventis’ R&D process exem-

plifies the idea that the effects of star scientists on
innovation are mediated by nonstar scientists. Sanofi-
Aventis has two distinct research groups. The Discovery
Research Group is comprised of a few key scientists
and is responsible for identifying important treatment
areas. Every year this group recommends 15–20 promis-
ing areas for treatment. These recommendations are
followed up by the International Development Group,
which is responsible for seeing the potential drug treat-
ments through to development (Sanofi-Aventis 2004
Annual Report). This structure seems to indicate that
Sanofi-Aventis employs star scientists as visionaries in
the Discovery Group, whereas nonstar scientists are pri-
marily responsible for drug development. Without the
involvement of a large number of nonstar scientists in
the development process, any innovative effect stars have
would be attenuated.
In contrast to prior work emphasizing networks as the

locus of innovation (Powell et al. 1996, Owen-Smith and
Powell 2004), our findings highlight the importance of
individual-level factors in explaining firm-level hetero-
geneity in innovation, and thus validate recent theoret-
ical calls for a stronger micro foundation in strategic
management research (Felin and Foss 2005, Felin and
Hesterly 2007). Because innovation is, by its nature, a
knowledge-intensive activity, the question turns to the
issue of how firms learn. Simon (1991) suggests that
intellectual human capital, especially the recruitment of
scientists, can be an effective way to learn and inno-
vate. He emphasizes that “all organizational learning
takes place inside human heads; an organization learns
in only two ways: (a) by the learning of its members,
or (b) by ingesting new members who have knowl-
edge the organization didn’t previously have” (Simon
1991, p. 125). The role of individuals in knowledge cre-
ation is also highlighted by Grant, who argues that “the
emphasis upon the role of the individual as the primary
actor in knowledge creation and the principle repos-
itory of knowledge # # # is essential to piercing the veil
of organizational knowledge and clarifying the role of
organizations in the creation and application of knowl-
edge” (Grant 1996, p. 121; italics added). We find that
rank-and-file knowledge workers, here nonstar scientists,
have a direct bearing on the innovative performance of

firms, although controlling for alternative explanations
across different levels. We submit that future research
needs to consider the role of individuals when studying
antecedents to a firm’s dynamic capabilities in particular,
and firm performance in general.
Rather than finding a linearly positive relationship

between R&D expenditures and biotech patenting, as
hypothesized, we find that this relationship is charac-
terized by diminishing marginal returns. This implies
that although additional R&D expenditures may translate
into a higher number of expected biotechnology patents,
their positive effect, however, decreases as R&D expen-
ditures increase. A recent analysis of R&D expendi-
tures and innovative output in the global pharmaceutical
industry between 1980 and 2003 details the phenomenon
of ever-increasing R&D expenditures, although the num-
ber of new drug registrations declines, and concludes
that “despite its outward strength, the [pharmaceutical]
industry is ailing. The pipelines of forthcoming drugs on
which its future health depends have been drying up for
some time” (The Economist 2004).
We find support for the idea that acquisitions increase

innovative output, but no support for our hypothesis that
alliances do the same. This interesting result may be the
product of our richly specified model, which allows us to
uncover the effects of these disparate innovation mech-
anisms in greater detail. More specifically, our findings
point to the idea that acquisitions can be a “stand-alone”
mechanism to innovation. In an acquisition, a pharma-
ceutical firm often acquires not only the drug pipeline
of the target firm, but also the firm’s internal research
capability (Galambos and Sturchio 1998, Higgins and
Rodriguez 2006). In contrast, alliances between large
pharmaceutical firms and biotechnology ventures often
entail the sharing of explicit knowledge only in the
later stages of drug development and subsequent com-
mercialization (Rothaermel and Deeds 2004). The suc-
cessful transformation and implementation of codified
knowledge obtained in an alliance still requires that the
firm has the ability to assimilate and apply this knowl-
edge (Cohen and Levinthal 1989). Thus, by controlling
for this internal ability, encompassing both intellectual
human capital and R&D capability, we see that alliances,
as a stand-alone mechanism, appear to be of little value
to firm innovation. Although a firm can acquire the req-
uisite dynamic capabilities to innovate through acquisi-
tions, we find, in contrast, that the firm must already
possess prior R&D capability for alliances to be a viable
mechanism for innovation, as is highlighted in the sig-
nificant interaction effects across levels of analysis.
Regarding the demonstrated interdependence of alter-

nate levels across analysis, we found, in general terms,
that individual-level antecedents to innovation are sub-
stitutes for firm- and network-level antecedents to inno-
vation, and that firm- and network-level antecedents to
innovation are complements. The results obtained here are
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interesting in the sense that we find support for both sub-
stitutability and complementarity hypotheses, depend-
ing on which levels of analysis and intersections across
levels are considered. Thus, choosing between differ-
ent innovation mechanisms in a discriminating fashion
appears to be critical to firm innovation. Taken together,
the antecedents to innovation capabilities clearly lie
across different levels of analysis.

Limitations and Future Research
This research represents an initial attempt to develop
and test a multilevel model, incorporating individual-,
firm-, and network-level effects, for use in investigating
firm innovation. As such, it is prone to several limita-
tions that, in turn, open pathways to future research. For
example, it is possible that some of the results, specif-
ically those related to R&D capability and alliances,
could be attributable to our choice of measurement
rather than to the underlying effect of the mechanism.
By using more fine-grained data, future research could
increase confidence in our finding. For example, prior
research illustrates that when focusing exclusively on
alliances, different types of alliances and different types
of alliance experiences have differential effects on firm
innovation (Hoang and Rothaermel 2005, Rothaermel
and Deeds 2006). Future research could incorporate
detailed alliance distinctions into the multilevel theoret-
ical model presented, while controlling for alternative
innovation mechanisms, and thus expand our under-
standing of the mechanisms that drive firm innovation in
a more in-depth manner.
An additional limitation of this study is that we proxy

firm R&D capability in biotechnology with an aggregate
measure of R&D expenses. This issue is especially trou-
blesome for the more diversified pharmaceutical firms in
this sample, such as Johnson & Johnson, because we are
unable to segregate the portion of R&D expenses that
are directed towards biotechnology. Future research may
increase the validity of the findings presented by pars-
ing out the amount of firm-level R&D capability that is
associated only with a firm’s biotechnology efforts.
We also acknowledge that future research may be

able to develop and implement a better measure of firm
innovation than patent counts. We emphasize, however,
that patents are useful for measuring technological inno-
vation, because they are only awarded to novel, non-
obvious inventions that represent advancements over
existing technology. Moreover, we caution that alterna-
tive innovation measures, including new products devel-
oped, frequently exhibit too little variance to be feasible
as a dependent variable and are difficult to track in the
scale and detail necessary for a comprehensive longitu-
dinal analysis.
Finally, although the results presented offer fresh in-

sights into firm innovation, the study’s focus on biotech-
nology innovation by large pharmaceutical firms raises

questions about the generalizability of the findings. This
industry segment is unique in its significant reliance upon
basic scientific research as well as its protracted and
arcane product development and approval cycle. Despite
these unique characteristics, we submit that our results
could be generalizable to other industries, because prior
work details the increasing importance of research in
basic science, interfirm cooperation, and acquisitions in
determining the innovation success or failure of individ-
ual firms across a diverse set of industries (Chesbrough
2003, Cockburn et al. 2000, Hagedoorn 1993).

Conclusion
Our initial attempt to disentangle the multilevel effects
associated with the various mechanisms firms can use to
innovate contributes to the understanding of how firms
build and refine dynamic capabilities to adapt to rad-
ical technological change. This research demonstrates
that individuals matter and that it is inappropriate to
investigate firm adaptation and innovation without the
consideration of its intellectual human capital. Further,
the various interactions between the levels of analysis
indicate that the antecedents to dynamic capabilities lie
across different levels. Firm- and collective-level mech-
anisms appear to be complementary in nature, whereas
intellectual human capital appears to substitute for firm-
and network-level mechanisms. The development of a
strong intellectual capital base requires time and the
commitment of resources that are often not available to
a firm faced with the demands of adapting to a new tech-
nological paradigm. Therefore, firms should, with the
help of star scientists, identify an exogenous paradigm
shift, and then assemble the requisite human assets in the
form of rank-and-file scientists. Our research indicates
that these firms will develop the innovation capabilities
necessary to succeed.
Managers generally face the added burden of time

constraints when attempting to innovate. Therefore, it
is paramount to firm success that a manager be able
to not only weigh the strengths and weaknesses of the
available innovation mechanisms, but also to understand
and predict how these mechanisms will interact when
used in tandem. Faced with the daunting task of adapt-
ing to a new technological paradigm, however, managers
often choose the “grab bag” approach to innovating,
employing a variety of available mechanisms simulta-
neously without knowledge of the possible deleterious
interaction effects. Our research demonstrates that, due
to path dependency and constraints imposed on a firm’s
financial-, managerial-, and research-related resources,
a tandem approach may actually lead to decreases in
innovative output. In other words, when investigating
the number of innovation mechanisms a manager should
employ, more is not always better. Instead, the man-
agers who take a discerning and discriminating approach
towards selecting innovation mechanisms will be most
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successful in building the dynamic capabilities necessary
to continuously innovate.
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Endnotes
1Formally: Let xi denote one activity (e.g., recruitment of
intellectual human capital) and xj denote a second activity
(e.g., forming strategic alliances); then, these two activities
are said to be complements if *xi/*xj > 0, and substi-
tutes if *xi/*xj < 0. Complements and substitutes correspond
to interactions in moderated regression analysis, because
their combined effects differ from the sum of their sepa-
rate parts. Specifically, complements are represented by pos-
itive interaction effects reflecting their synergizing behavior,
while substitutes are represented by negative interaction effects
reflecting their compensating behavior (see Cohen et al. 2003,
pp. 255–260).
2Including: BioScan "annual volumes$, Burrill & Company
Life Sciences Annual Industry Reports, Compustat, Datas-
tream "Thomson Financial$, Ernst & Young’s Annual Biotech

Industry Reports, FIS Mergent, and Scrip’s Yearbooks on the
Global Pharmaceutical Industry, among other sources.
3We explicitly controlled for horizontal mergers in the regres-
sion analysis through the inclusion of an indicator variable.
4To assess the validity of the initial sample obtained, we
independently sampled the databases maintained by Recom-
binant Capital, a research firm specializing in biotechnology.
We tracked 125 pharmaceutical companies, among which all
of our 93 original firms were listed. This enhanced our con-
fidence in the initial sample, in which we tracked the firms
forward rather than just sampling on surviving firms at the
end of the study period. The remaining 32 firms were either
smaller firms that did not receive sufficient coverage to merit
inclusion in any of the industry publications that we consulted,
or were more recent entries into the industry, and thus did not
qualify under our definition of an “incumbent pharmaceutical
firm.”
5Diamond v. Chakrabarty 447 U.S. 303 (1980).
6The U.S. PTO compiled these data based on all biotechnol-
ogy patents in the following patent classes: 424 [Drug, bioaf-
fecting and body-treating compositions (different subclasses)],
435 [Chemistry: Molecular biology and microbiology], 436
[Chemistry: Analytical and immunological testing], 514
[Drug, bioaffecting, and body-treating compositions (differ-
ent subclasses)], 530 [Chemistry: Natural resins or derivatives;
peptides or proteins; lignins or reaction products thereof], 536
[Organic compounds], 800 [Multicellular living organisms and
unmodified parts thereof and related processes], 930 [Peptide
or protein sequence], PLT [plants].
7Alternatively, we proxied stars by whether a researcher had
received a Nobel Prize in either chemistry or medicine, the
two fields relevant to our study. We cross-referenced the list of
all Nobel Laureates with our author database to assess whether
any of the Nobel Laureates had published research articles
where they listed a pharmaceutical company as their affiliation.
This process yielded 23 Nobel Laureates who published 148
papers. The variance among firms, however, was too small for
any meaningful econometric analysis.
8Notwithstanding this evidence, we further investigated this
issue empirically. We took a random sample of 40 articles
from our database and collected the information from these
publications pertaining to date of submission and date of pub-
lication. Based on the input received from industry experts,
we collected 20 articles from the period between 1984 and
1994, whereas the remaining 20 articles were from the period
between 1995 and 2004. The analysis of the data was in line
with what we learned from our qualitative data. The mean time
for all 40 papers, from submission to acceptance, was 115 days
(a minimum of 22 days and a maximum of 263 days). The sub-
mission to publication time lag appears to shorten, however,
as there was a statistically significant difference for the time
to publication for papers published between 1984–1994 (mean
of 134 days) versus 1995–2004 (mean of 105 days). Although
our selection included a number of different journals, there did
not appear to be any significant difference between them.
9The same holds true for patents. For example, when the
Cohen-Boyer patent (U.S. Patent 4,237,224) was granted in
1980, it was assigned to Stanford University, the locus of IP
creation, even though Boyer had left academia to commercial-
ize the breakthrough in rDNA when cofounding Genentech,
the first biotechnology company, in 1976. In general, journal
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publications precede patents in time. Murray and Stern (2004)
found that the average lag between publication of a journal
article and subsequent granting of the patent was a little over
three years (37.5 months) for their sample of 169 patent-paper
pairs.
10BioScan and Recombinant Capital are fairly consistent in
their reporting. We found the intersource reliability to be
greater than 0.90 when documenting alliances. BioScan and
Recombinant Capital appear to be the two most comprehen-
sive publicly available data sources documenting the global
biopharmaceutical industry, and have been used frequently in
prior research focusing on different questions and generally
relying on only one of these two sources (e.g., Shan et al.
1994, Lane and Lubatkin 1998, Lerner et al. 2003, Powell
et al. 1996).
11To assess how sensitive our results are to the reported
random-effects specification, we additionally applied a fixed-
effects estimation. The results remained robust.
12It is important to note that this result cannot be attributed
reasonably to collinearity, because the bivariate correlation
between stars and nonstars is r = 0#57. Although these two
constructs are significantly correlated, and thus fulfill the
requirement for potential mediation (Hair et al. 2006), it also
indicates discriminant validity because the bivariate correla-
tion is well below the conventional ceiling of r = 0#70. More-
over, all variance inflation factors for stars and nonstars were
below 1.5, thus well below the traditional cut-off ceiling of 10
(Cohen et al. 2003).
13A negative beta value translates into an incidence rate ratio
of less than one, whereas a positive beta value translates into
an incidence rate ratio of greater than one.
14To further assess whether the results for the interaction
effects could be driven by nonlinearity of the direct effects
composing the interaction effects or by collinearity between
these direct effects (Cortina 1993), we determined the bivari-
ate correlations and shared variances of each of the direct-
effect combinations constituting the interactions as well as
all variance inflation factors. The bivariate correlations for
the direct effects underlying the interaction effects are in the
range between 0#122 ≤ r ≤ 0#423, and the shared variances
are between 1#49% ≤ r2 ≤ 17#89%. Thus, the bivariate cor-
relations are well below the traditional cut-off of r = 0#70,
whereas the shared variances are well below the recommended
ceiling of 50% shared variance (Cohen et al. 2003). Estimat-
ing all variance inflation factors (VIFs) reveals that in the fully
specified direct-effects model, the average VIF is 1.90 and the
maximum VIF is 3.20. In the interaction models the average
VIF in Model 5 is 2.71, with a maximum VIF of 6.19. The
average VIF in Model 6 is 3.85, with a maximum VIF of
10.91. Therefore, all VIFs, except for the interaction between
nonstar scientists and biotech alliances, are below the recom-
mended ceiling of 10 (Cohen et al. 2003). To investigate in
more detail whether the slightly elevated VIF between non-
star scientists and biotech alliances could lead to a level of
collinearity where the significant interaction results are spu-
rious due to nonlinearity of the direct effects underlying the
interaction effects, we followed Cortina’s (1993) recommenda-
tion and tested the interaction between nonstar scientists and
biotech alliances after not only including all control variables
and the linear direct effects for nonstar scientists and biotech
alliances, but also the squared terms of these two direct effects

to control for potential nonlinearity in the relationship between
the direct effects and biotech patenting. This approach allows
the researcher to “control for possible non-linear effects and
thus to rule out alternative explanations,” and as such “this
solution is conservative [because] it involves the addition of
[squared] terms to the equation that must be partialled out
before the assessment of the interaction term” (Cortina 1993,
p. 918). The results of this test indicate that the interaction
between nonstar scientists and biotech alliances remained neg-
ative and statistically significant "p < 0#01$, despite the inclu-
sion of linear and squared terms for nonstar scientists and
biotech alliances. These findings enhance our confidence in
the results reported.
15The betas for Biotech Alliances in Table 2 are 0.0206
(Model 2) and 0.0199 (Model 4). This translates into an inci-
dent rate ratio of 1#02%exp (beta)& and a factor change of 2%.
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