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D espite being theoretically suboptimal, simpler contracts (such as price-only contracts and quantity discount contracts
with limited number of price blocks) are commonly preferred in practice. Thus, exploring the tension between

theory and practice regarding complexity and performance in contract design is especially relevant. Using human subject
experiments, Kalkancı et al. (2011) showed that such simpler contracts perform effectively for a supplier interacting with
a computerized buyer under asymmetric demand information. We use a similar set of experiments with the modification
that a human supplier interacts with a human buyer. We show that human interactions strengthen the supplier’s
preference for simpler contracts. We find that suppliers have fairness concerns even when they interact with computer-
ized buyers. These fairness concerns tend to be even stronger when suppliers interact with human buyers, particularly
when the complexity of the contract is low. We also find that suppliers are more prone to random decision errors (i.e.,
bounded rationality) when interacting with human buyers. In the absence of social preferences, Kalkancı et al. identified
reinforcement and bounded rationality as key biases that impact suppliers’ decisions. In human-to-human experiments,
we find evidence for social preference effects. However, these effects may be secondary to bounded rationality.
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1. Introduction

Recent research has been updating the traditional
contract design’s paradigm of assuming self-inter-
ested, expected-profit-maximizing individuals to
reflect the reality of human behavior. For example,
Becker-Peth et al. (2013) calibrate parameters of an
optimal buyback contract to reflect the behavior of
agents; they extrapolate contract terms with experi-
mental responses to the contract. Lim and Ho (2007)
observe that increasing the number of price blocks
beyond two in quantity discount contracts (while
keeping the number of parameters determined by
subjects the same by fixing some of the decisions to
their optimal values) continue to increase supply
chain efficiency in a complete information setting.
This is contrary to theory, which predicts that all ben-
efits should accrue when the number of price blocks
increases from one to two and that no additional ben-
efits should be observed from increasing the number

of blocks further. Kalkancı et al. (2011) study com-
plexity as a design dimension with human subject
experiments in a setting of a supplier–buyer supply
chain under asymmetric demand information and
conclude that the notion that complex contracts can
optimize the supplier’s profit is flawed. These studies,
among others, argue that even though human sub-
jects’ decisions do not perfectly mimic self-interested,
expected-profit-maximizing theory, their decisions
can be explained and predicted, and contracts can be
designed accordingly.
We follow Kalkancı et al.’s (2011) approach to the

contract design problem, which differs from most
other behavioral studies. Instead of designing optimal
contracts for “realistic” agents, the authors study
principals while keeping the agent rational. Their pre-
mise is that the “mechanism designer” is only an
adviser to the “true” principal.1 Theoretically, the
mechanism designer is the principal. In practice, how-
ever, contract structure and contract parameters are
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determined by different individuals. Furthermore, the
involvement of human decision makers is often
unavoidable because crucial information, such as
reactions of downstream channel partners on the
receiving end of the contract, may not be available
anywhere other than from the knowledge and judg-
ment of managers. As such, understanding decision
biases of these human principals is important.
In a setting with a single supplier and a single

buyer, Kalkancı et al. characterize the impact of con-
tract complexity and asymmetric information on per-
formance. In their experiments, the computerized
buyer (who maximizes her expected profits) faces a
newsvendor setting and has better information on
end-consumer demand than the human supplier. The
supplier offers either a quantity discount contract
(with two or three price blocks) or a price-only con-
tract: contracts that are commonplace in practice (e.g.,
in pharmaceuticals, Cui et al. 2007; components for
airplanes, Boeing 2008; furniture industry, Guo et al.
2010; and electronics, Kayıs� et al. 2012), yet different
in complexity. The authors experimentally determine
the appropriate level of complexity, measured in the
number of price blocks. They show that, contrary to
what traditional contract design theory predicts, sim-
pler contracts, either a price-only contract or a quan-
tity discount contract with a low number of price
blocks, perform very well under asymmetric demand
information.
With their human-supplier, computerized-buyer

setting, Kalkancı et al. minimize the effects of social
preferences, such as fairness, and focus on the com-
plexity-induced decision biases of the supplier. In this
study, we extend their research by considering the
interaction of a human supplier with a human buyer
to recapture the effects of social preferences. We
observe that the main conclusions of human-to-
computer experiments remain valid in this setting.
Moreover, we demonstrate that human-to-human
interactions strengthen the preference for simpler
contracts; even the price-only contract performs
effectively under human-to-human interactions. We
also observe that profit splits between suppliers and
buyers are not more equitable in human-to-human
experiments. Even though we find evidence for social
preference effects in our experiments, this result sug-
gests that such effects may play a secondary role to
complexity.
In addition to providing validation for Kalkancı

et al.’s human-to-computer experiments, human-to-
human experiments further our understanding of
when automating some players in an experiment
makes a difference and when it does not. First, we
find that suppliers have fairness concerns even when
they interact with computerized buyers. These fair-
ness concerns tend to be even stronger when suppli-

ers interact with human buyers, particularly when the
complexity of the contract is low. We also find that
suppliers are more prone to random decision errors
(i.e., bounded rationality) when interacting with
human buyers.
The rest of this study is organized as follows. In sec-

tion 2, we summarize the related theoretical and
behavioral literature. We provide the model defi-
nition in section 3.1, the theoretical predictions in
section 3.2, and the experimental design in section 3.3.
Section 4 details our methodology and displays the
consequent results. We discuss our behavioral
observations in section 5 and conclude the study in
section 6.

2. Literature Review

There are two streams of literature relevant to this
research, which we briefly review below. For a review
of the theoretical literature on all-unit quantity dis-
counts, we refer readers to Benton and Park (1996)
and Munson and Rosenblatt (1998), as well as to
Altintas et al. (2008) and the references therein.

2.1. Behavioral Literature on Contracts
Keser and Paleologo (2004) study the price-only con-
tract in the interaction of a newsvendor buyer with a
supplier. The authors conclude that even though the
inefficiency of the price-only contract is not signifi-
cantly different from theoretical predictions, the
behaviors of the players are. Katok and Wu (2009)
further extend this line of research by comparing the
performance of a simple price-only contract with more
complex buyback and revenue-sharing contracts. The
authors automated one of the decision makers to elim-
inate the effect of social preferences. Their experi-
ments show that complex contracts improve the
supply chain performance significantly compared
with a price-only contract; however, the improvement
is less than what is theoretically predicted.
The behavioral literature on quantity discount con-

tracts is still developing. Lim and Ho (2007) study the
optimal number of price blocks under complete infor-
mation where demand is deterministic and character-
ized by a linear-inverse function. In this case, theory
predicts that all benefits should accrue when the
number of price blocks increases from one to two and
that no additional benefits should be observed from
increasing the number of blocks further. However,
the authors observe that benefits continue to increase
in the number of blocks, as subjects cannot coordinate
the supply chain with only two price blocks. Even
though Lim and Ho study quantity discount con-
tracts, their focus is not on the issue of complexity.
Their subjects make exactly the same number of deci-
sions under different numbers of price blocks, as the

Kalkancı, Chen, and Erhun: Complexity as a Contract Design Factor
270 Production and Operations Management 23(2), pp. 269–284, © 2013 Production and Operations Management Society



authors fix some of the decisions to their optimal val-
ues. In addition, Lim and Ho study a situation with
complete information even though almost all con-
tracting situations in practice exhibit asymmetric
information. Indeed our results show that commonly
observed results in the behavioral literature under
complete information may no longer hold under
asymmetric information, thereby validating our
focus.
Ho and Zhang (2008) question the role of framing

by comparing a two-part tariff with an all-unit quan-
tity discount in a setting similar to that of Lim and
Ho. The authors study contracts with different levels
of complexity, including the single-price contract, the
two-part tariff, and the quantity discount contract.
In their setting, there is one contract decision in the
single-price contract and two decisions in both the
two-part tariff and the quantity discount contract.
The focus of Ho and Zhang is the role of the fixed fee
(two-part tariff) and its framing (quantity discount).
They show that the fixed fee fails to increase the effi-
ciency of the channel when framed as a two-part
tariff, but achieves a higher efficiency when framed
as a quantity discount. This is contrary to theory,
which predicts that these two mechanisms should be
equal. Thus, the authors conclude that framing mat-
ters when designing supply contracts. Even though
Ho and Zhang examine the issue of contract com-
plexity, there are substantial differences between
their setting and ours. There is no demand uncer-
tainty in Ho and Zhang, and the authors do not
include asymmetric information in their setting.
When the supplier has complete information and
there is no demand uncertainty, he can simply design
a quantity discount contract with two prices (which
essentially acts as a two-part tariff) and can extract
the entire supply chain profit. Thus, the supplier does
not have any reason to offer a contract more complex
than a quantity discount contract with two prices.
However, in the presence of information asymmetry
and demand uncertainty, this is no longer the case.
The supplier can effectively utilize a quantity dis-
count contract with three prices (by taking into
account the buyer’s quantity choice under different
private demand conditions she might have) and even
then he has to leave some profit to the buyer. Given
the substantial differences in the basic setting and the
philosophy of treatment design between Ho and
Zhang and this study, these two studies complement
each other.

2.2. Literature of Task Complexity
The notion of complexity is not new and has been a
subject of studies in many fields. With his seminal
work, Simon suggests that “when faced with com-
plexity beyond his ken” a human subject “finds ways

of action that are sufficient unto the day” (Simon
1978); that is, he relies on simpler decision rules
(Simon 1955). For example, unless there is a compel-
ling reason to do so, humans tend not to change their
established behavior (Samuelson and Zeckhauser
1988, Simon 1978). Similarly, humans have a tendency
to weigh recent decisions more heavily than earlier
decisions, especially when the complexity of decisions
is high (Hogarth and Einhorn 1992). Such behavioral
biases clearly indicate that when faced with complex
decisions, humans act boundedly rational. A bound-
edly rational decision maker lacks the propensity to
optimize; although he may choose better alternatives
more often, his decision making is subject to decision
noise and random decision errors (McKelvey and
Palfrey 1995, Su 2008).
Unfortunately, there is no consensus of how com-

plexity should be defined, particularly with regard to
decisions faced by human decision makers. Kauff-
man, an evolutionary biologist, and his colleagues
(Kauffman 1993) proposed the NK model, originally
to examine how proteins and biological organisms
evolve. The NK model has been adapted to study
complexities in many other domains. In particular,
Rivkin (2000) employed the NK model to study the
complexity of management strategies. The model has
two parameters governing the complexity of a firm’s
decision problem; N is the number of decisions the
firm faces and K (0 � K � N � 1) is the degree of
interaction between these decisions. Our definition of
complexity is the most similar to this definition. The
NK model is a way to characterize one prominent
type of complexity in our setting, but in no way
captures every notion of complexity in many differ-
ent literatures; we further discuss this point in section
3.1.
Complexity, with respect to tasks carried out by

humans, is also well studied in the psychology litera-
ture. Campbell (1988) provides a comprehensive
review of the area. In this literature, the notion of
complexity, often, is examined together with the
human psychological experience. The literature is
divided into three areas. The first is framing complex-
ity primarily as a psychological experience. One
example is the level of challenge experienced by an
individual. A second literature examines complexity
as a task–person interaction. Examples are difficulty
levels perceived by an individual, his amount of expe-
rience of the particular task, and whether he is famil-
iar with the task. The last is the study of complexity as
a function of the objective characteristics of the task.
This approach is similar, in spirit, to the NK modeling
framework and to the study presented in this article.
The literature includes studies of characteristics, such
as information load and diversity, beyond those cap-
tured in the NK model and our study. In our study,
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the scope is limited to two objective characteristics of
the decision task (i.e., the number of decisions as a
measure of complexity). As our study focuses on
operations management issues, we do not explicitly
analyze psychological factors or the interaction of
psychological experiences and the task (such as the
subjects’ prior knowledge of supply chain manage-
ment). However, every subject in our experiments
only participated in one experiment, and he or she
would have no prior experience (which can be inter-
preted as a rudimentary control) of the specific setting
of our experiments.

3. Model and Experimental Design

3.1. Model Definition
We study a setting identical to that of Kalkancı et al.
(2011) with a single supplier (he) and a single buyer
(she). The buyer procures a product from the sup-
plier and sells it to the end consumer at p dollars per
unit. The supplier has ample capacity and produces
the buyer’s orders at a cost of k dollars per unit,
where k < p. Products are ordered before demand is
realized. Any unmet demand is lost without a stock-
out penalty. There is no salvage value or disposal
cost for leftover products. The supplier determines
the pricing scheme of the component and the buyer
selects an order quantity that maximizes her expected
profit.
Our buyer is a newsvendor who faces a random

demand, D, which is uniformly distributed between
(l � v) and (l + v), where l is the mean demand and
v defines the range. The mean demand is the buyer’s
private information. The supplier only knows that l is
one of three types: high (lH), medium (lM), or low
(lL), each with equal probability. We assume that
types are equally spaced; that is, lM ¼ lL þ d and
lH ¼ lM þ d, where d is the degree of separation
between types. We also assume that the lowest possi-
ble demand is zero; that is, v ¼ lL. Note that our the-
oretical development coincides with our experimental
setting. In our experimental setting, we assume that
the lowest possible demand is zero, as this assump-
tion increases the incentive to use more complex con-
tracts by sharpening the comparison between simple
and more complex contracts. Theoretically, this
assumption simplifies the comparisons by removing
the guaranteed payoff of the buyer.
We study different contracts between the supplier

and the buyer. In a price-only contract (one-price con-
tract), the supplier sets a single wholesale price w1

and the buyer procures the quantity she chooses. We
also study two all-unit quantity discount contracts. In
the quantity discount contract with two prices (two-
price contract), the supplier quotes two prices
(w1 � w2) and a single price break Q1. If the buyer

orders less than Q1, she pays w1 per unit; otherwise,
she pays a cheaper unit price w2. In the quantity dis-
count contract with three prices (three-price contract),
the supplier quotes three prices (w1 � w2 � w3) and
two price breaks (Q1 � Q2). If the buyer orders less
than Q1, she pays w1 per unit. If she orders more than
Q1 but less than Q2, she pays a cheaper unit price w2.
Otherwise, she pays an even cheaper unit price of w3.
Note that the number of the supplier’s decision vari-
ables depends on the contract employed, whereas the
buyer’s only decision is the order quantity.
Theoretically, increasingly complex contracts would

benefit the supplier. In our setting, as the mean
demand is one of three types, a quantity discount con-
tract with three price blocks and a minimum quantity
commitment Q0 for the highest price is an optimal
mechanism, as it has the capability to separate the
types completely when needed; more price blocks
would have no additional benefit for the supplier or
the supply chain. As the gap between the optimal
mechanism and three-price contract is only 7% (in
terms of the supplier’s profits) in our experimental
setting, we conclude that the three-price contract
models the optimal contract effectively, and we
choose not to include the optimal mechanism as an
additional treatment in our experiments.
We note that our definition of complexity is the

most similar to the one in Kauffman’s (1993) NK
model. In particular, for the supplier’s contract
design problem, we study three decision scenarios
(one-price, two-price, and three-price) where the sub-
jects made one, three, and five decisions. Thus,
N = 1, 3, and 5, respectively, in the three scenarios.
In our case, K = 2 and 4 in the two-price and three-
price cases as decisions interact. Whereas our defini-
tion of complexity can be framed in the NK model,
our results are not explicitly derived from the analy-
sis of the N and K parameters. We only use the
framework to rank order the levels of complexities in
our scenarios. That is, the three-price contract’s (N,K)
values are (5,4) compared with that of the price-only
contract of (1,0). In this context, the three-price con-
tract is more complex. According to the NK model,
the complexity of the buyer’s problem under differ-
ent treatments is comparable. When we observe the
buyer’s decisions, we find similarities in the way
buyers make their decisions under different treat-
ments; in particular, they anchor to the mean, as we
discuss in section 5.3.

3.2. Expected Profit Maximizing Theory of
Price-Only and Quantity Discount Contracts
To derive the expected profit maximizing theory of
price-only and quantity discount contracts, we first
present the computerized buyer’s optimal behavior.
Let
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SjðlÞ ¼ F�1 p� wj

p
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¼ ðl� vÞ þ 2v
p�wj

p

� �
p � wj

0 otherwise

(
ð1Þ

be the order-up-to level for the wholesale price wj

(j = 1,2,3), where F(�) is the cumulative distribution
function of demand distribution and (x)+ = max(0,x).
For a price-only contract, the buyer’s optimal order
quantity is S1ðlÞ; for quantity discount contracts, it
is either at one of the order-up-to levels or at one of
the price breaks (Jucker and Rosenblatt 1985).
Given the buyer’s optimal response to a contract

(Equation (1)), when types are equally spaced (i.e.,
v ¼ lL, lM ¼ lL þ d, and lH ¼ lM þ d, where d is
the degree of separation between types) and equally
likely, the supplier’s optimal wholesale price under a
price-only contract is as follows:

w1 ¼ min
p

4v

lL þ lM þ lH
3

� �
þ p

4
þ k

2
; p

� �

¼ p

2
min 1þ 1

2

d
lL

� �
þ k

p
; 2

� �
: ð2Þ

Therefore, the buyer’s and the supplier’s optimal
decisions under the price-only contract are fully
characterized by Equations (1) and (2), respectively.
The supplier’s pricing decisions under quantity dis-

counts with asymmetric information are more
involved. The supplier not only has more decisions to
make, but also he utilizes prices and price breaks to
separate the different types of the buyer. That is, the
supplier must consider the buyer’s incentive compati-
bility while designing contracts, which increases the
complexity of his decision. However, as our goal is to
study the role of contract complexity, we can restrict
our attention to the parameter values where contract
complexity pays off the most; that is, where the sepa-
ration between types is high and the profit margin is
relatively low. For these parameter values, the
supplier completely separates the high type from the
others, and the components of the pricing scheme can
be characterized (Kalkancı et al. 2011). For a two-price
contract, w2 is set to make the high-type buyer indif-
ferent between buying at w1 and w2, and

w1 ¼ min
3p

10v

lL þ lM þ lH
3

� �
þ 3p

10
þ 2k

5
; p

� �

¼ p

5
min 3þ 3

2

d
lL

� �
þ 2

k

p

� �
; 5

� �
;

Q1 ¼ ðlH � vÞ þ 2v
p� k

p

� �
¼ 2lL 1þ d

lL
� k

p

� �
:

A similar analysis follows for a three-price contract.
For a more general treatment of theory, we refer the
reader to Kalkancı et al. (2011).

3.3. Experimental Design
We used a between-subject design where each subject
was faced with one of three different treatments: the
one-price, two-price, and three-price contracts
defined above. Our human subjects were recruited
from the Stanford student body and were provided
monetary compensation according to their perfor-
mance. Subjects were given Web-based instructions
and a quiz before the experiment. (The detailed
instructions and the quiz are provided in an online
appendix.) We implemented our experiments in the
HP Experimental Economics software platform and
conducted them at the Stanford School of Medicine
computer labs. To facilitate subjects’ decision process,
we provided them with decision support tools (Figure
1). Before a subject submitted a decision, he or she
could use this “what-if” decision support tool to eval-
uate his/her decision. In this tool, a buyer could enter
her potential order quantity based on her type. Then,
the tool showed the subject her profit under different
demand conditions. A supplier could enter his poten-
tial decision as well as his buyer’s potential average
demand and order quantity. Then, the tool showed
the subject his potential profit and his buyer’s profit
under different demand conditions. Subjects were
able to test several different decisions before submit-
ting their order quantity/pricing scheme. They could
also see a summary of results from past periods in a
history table. The table included the supplier’s
prices/price breaks, the buyer’s order quantity, the
buyer’s realized average demand, and the subject’s
revenue and profit from that period.
We performed three sets of experiments in the fall

of 2009. In all experiments, an equal number of sub-
jects were assigned either the role of supplier or buyer
and each subject assumed the same role throughout
the experiment. We randomly re-matched a supplier
and a buyer in each period to prevent reputation-
building behavior. In each period, each buyer was
assigned one of three types (high, medium, or low) to
guarantee that no single player determined the behav-
ior of each type. We recruited 16 subjects each for one-
price and two-price experiments and they played the
game for 40 periods. In the three-price experimental
session, 20 subjects were recruited and played the
game for 33 periods. Overall, 52 subjects participated
in our human-to-human study. In all experiments, we
set the parameter values as follows: the supplier’s unit
cost was k = 40, the unit selling price was p = 200, and
the mean demand for the low, medium, and high
types were lL ¼ 50, lM ¼ 90, and lH ¼ 130, respec-
tively. The range on the demand distribution was
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2v = 100. Note that for their experiments, Kalkancı
et al. (2011) recruited 19 subjects for each treatment.
These subjects were assigned the role of supplier using
a one-price, two-price, or three-price contract, and
they played against a computerized buyer for 40 peri-
ods with the same parameter values as ours.
On the basis of our parameter set, we display the

optimal values of prices and price breaks in Table 1
along with the buyer’s optimal procurement quanti-
ties under the one-price, two-price, and three-price
contracts and the expected supplier, buyer, and total
supply chain profits. In our setting, theory predicts a
20% (65%) increase (decrease) in the supplier’s
(buyer’s) expected profits when the supplier moves
from a one-price contract to a two-price contract, and
an 11% (5%) increase (decrease) when the supplier
moves from a two-price contract to a three-price con-
tract. Hence, as the contract complexity increases, the
supplier’s expected profits increase, and the buyer’s
expected profits decrease. Overall, the supply chain
efficiency increases 11% when a simple price-only
contract is replaced with more complex and efficient
quantity discount contracts.

3.4. Description of the Analysis
In our analysis, similar to Kalkancı et al., we combine
regression analysis with linear hypothesis testing.

Our regression model characterizes the impact of
time, buyer’s demand types, contract types, and vari-
ation among supplier–buyer pairs on supplier, buyer,
and the total supply chain profits. All three regression
equations are similar; we provide the one for the sup-
plier’s profit:

Pj
i;t ¼ Interceptþ bt � tþ bQD2 �QD2þ bQD3 �QD3

þ bM �Mþ bH �H þ bQD2�M � ðQD2�MÞ
þ bQD2�H � ðQD2�HÞ þ bQD3�M � ðQD3�MÞ
þ bQD3�H � ðQD3�HÞ þ bQD2�t � ðQD2� tÞ
þ bQD3�t � ðQD3� tÞ þ mi þ �i;t:

ð3Þ
The dependent variable Pj

i;t is the supplier’s profit
under a j-price contract (j = 1,2,3), considering the
effects of each individual supplier–buyer pair (i)
and period (t). The independent variables QD2 and
QD3 are dummy variables for the two-price and
three-price contracts, followed by two dummy vari-
ables M and H for the medium- and high-demand
types, respectively. The contract–demand type terms
consider possible interactions in the relations of con-
tract and demand types. We represent the effect of
time in two ways: with an independent variable t to

My Potential 
Order

Wholesale 
Price

20 100

Demand My Sales My Profit
Probability of Observing 

 a Smaller or Equal 
Demand

0 0 -2,000 0.01

10 10 0 0.11

20 20 2,000 0.21

30 20 2,000 0.31

40 20 2,000 0.41

50 20 2,000 0.50

60 20 2,000 0.60

70 20 2,000 0.70

80 20 2,000 0.80

90 20 2,000 0.90

100 20 2,000 1.00

0 0 -2,000 0.01

(a)

Buyer's 
Potential 

Information
Buyer's 

Potential Order

My Potential 
Wholesale 

Price

Other possible 
values are 90 and 

130 50 90 100

Buyer's 
Demand Buyer's Sales

Buyer's 
 Profit My Profit

Probability of Observing 
 a Smaller or Equal 

Demand

0 0 -9,000 5,400 0.01

10 10 -7,000 5,400 0.11

20 20 -5,000 5,400 0.21

30 30 -3,000 5,400 0.31

40 40 -1,000 5,400 0.41

50 50 1,000 5,400 0.50

60 60 3,000 5,400 0.60

70 70 5,000 5,400 0.70

80 80 7,000 5,400 0.80

90 90 9,000 5,400 0.90

100 90 9,000 5,400 1.00

0 0 -9,000 5,400 0.01

(b)

Figure 1 A Snapshot of Buyers’ and Suppliers’ Decision Support Tools

Table 1 Optimal Contract Parameters (Supplier’s Decisions), Procurement Quantities (Buyer’s Decision), and Expected Supplier, Buyer, and Total
Supply Chain Profits for Our Parameter Set under Different Contracts (Rounded up to the Next Integer)

Supplier’s optimal decisions Buyer’s optimal decisions

Prices Price breaks Procurement quantities

w1 w2 w3 Q1 Q2 Profit qL qM qH Profit Total Profit

One-price 160 7200 20 60 100 2000 9200
Two-price 184 152 160 8640 8 48 160 704 9344
Three-price 200 177 147 84 160 9576 0 84 160 669 10,245
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capture the direct effect and interactions terms with
contract type to capture the incremental effect. We
use a random-effects model (mi) to control for the
heterogeneity among supplier–buyer pairs in the
subject pool. Both mi and the error term �i;t are
assumed to be normally distributed, with mean zero
and a positive standard deviation. In our human-to-
human experiments, we observe many instances
where the buyer chooses not to buy, especially
when faced with relatively high prices even if the
expected-profit-maximizing decision would be to
buy. This can be interpreted as a rejection of the
contract offered by the supplier (buyers rejected
1.9%, 7.5%, and 3.8% of the contracts in the one-
price, two-price, and three-price treatments, respec-
tively; see section 5.4 for the analysis of this behav-
ior). To have a fair profit comparison between the
contracts, we restrict our attention to the instances
where the buyer accepts the contract offer (see Lim
and Ho 2007 for a similar approach). The regression
estimates for Kalkancı et al.’s human-to-computer
experiments and for our human-to-human experi-
ments conditional on contract acceptance are pro-
vided in Table 2.
Although the regression analysis helps us devise

some basic insights, a direct comparison of the aver-

age profits under different contracts does not follow
immediately from this analysis because the incremen-
tal effect of quantity discounts on the profits obtained
from different demand types as well as the time trend
is represented by separate terms and is not averaged.
Therefore, we make use of linear hypothesis testing to
analyze the theoretical predictions (Freund et al.
2006). We first calculate the average profits, which cor-
responds to period t� ¼ 20 profits in the one-price
and two-price experiments and to period t� ¼ 17
(t� ¼ 20) profits in the three-price experiment in the
human-to-human (human-to-computer) setting. For
example, the average profits of the supplier under
one-price, two-price, and three-price treatments esti-
mated from the regression are defined, respectively, as

p1s :¼ Interceptþ bt � t� þ 1=3� bM þ 1=3� bH;

p2s :¼ Interceptþ bt � t� þ bQD2 þ 1=3� bM þ 1=3� bH

þ 1=3� bQD2�M þ 1=3� bQD2�H þ bQD2�t � t�;

p3s :¼ Interceptþ bt � t� þ bQD3 þ 1=3� bM þ 1=3� bH

þ 1=3� bQD3�M þ 1=3� bQD3�H þ bQD3�t � t�:

We then use these average profits under different
contract types to test our hypotheses.

Table 2 Regression Coefficients for Supplier, Buyer, and Total Supply Chain Profits in Kalkancı et al. (2011) Human-to-Computer (HTC) and Our
Human-to-Human (HTH) Experiments

Regression coefficient estimates and standard errors (in parentheses)
Supplier’s profit Buyer’s profit Total profit

Variable HTC HTH HTC HTH HTC HTH

Intercept 2290.58��� 2769.20��� 1735.91��� 1049.76 4026.7��� 3765.83��

(176.11) (424.05) (370.81) (592.98) (272.94) (492.56)
t 15.26��� 15.27 �39.39��� �29.71 �24.14��� �10.07

(4.48) (13.12) (4.64) (18.98) (3.6) (16.58)
QD2 �620.19� 155.34 �768.77 �804.92 �1390.18��� �609.62

(249.46) (605.70) (524.62) (847.69) (386.16) (705.86)
QD3 3.64 566.86 �781.23 �1186.62 �778.41� �429.86

(249.46) (593.65) (524.62) (833.05) (386.16) (695.79)
M 4060.82��� 4106.81��� 2482.55��� 3292.22��� 6543.88��� 7397.61���

(126.52) (376.60) (131.24) (544.75) (101.92) (475.42)
H 8282.34��� 8520.36��� 4525.1��� 4840.95��� 12,806.78��� 13,300.87���

(127.17) (373.89) (131.89) (542.52) (102.43) (477.49)
QD2 9 M 1496.23��� �636.54 �271.43 �21.41 1227.08��� �664.99

(179.19) (539.78) (185.88) (782.24) (144.35) (686.14)
QD2 9 H 856.14��� �2096.15��� 399.22� 2019.41� 1255.96��� 78.48

(179.93) (541.00) (186.61) (784.76) (144.92) (690.38)
QD3 9 M 969.29��� 733.13 295.54 �828.31 1267.75��� �185.45

(179.18) (534.79) (185.86) (770.71) (144.34) (668.56)
QD3 9 H 128.7 �1111.68� 1847.7��� 2174.03�� 1977.5��� 999.83

(179.93) (532.36) (186.61) (768.78) (144.92) (670.51)
QD2 9 t 7.48 29.14 14.24� 15.89 21.72��� 38.67

(6.34) (18.68) (6.57) (27.05) (5.10) (23.67)
QD3 9 t �13.39� �11.30 19.84�� 49.64 6.44 31.54

(6.34) (20.49) (6.58) (29.60) (5.11) (25.80)
Standard deviation of mi 532.91��� 1589.62��� 1511.36��� 1905.36��� 1103.34��� 995.76���

Significance levels: ***p = 0.001, **p = 0.01, *p = 0.05.
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4. Human Experiments vs. Theory

With human suppliers facing computerized buyers,
Kalkancı et al. (2011) test the theoretical prediction
that suppliers increase their profits by increasing the
complexity of their contracts, that the supply chain
efficiency of complex quantity discount contracts is
higher than the efficiency of a price-only contract, and
that buyers’ profits decrease as the complexity of the
contract increases. They do so by comparing supplier,
buyer, and total supply chain profits in their experi-
ments with theory. With human suppliers facing
human buyers, we test similar predictions. Table 3
reports supplier, buyer, and total supply chain profits
as well as their respective comparisons with theoreti-
cal predictions in human-to-computer and human-
to-human experiments.
Our human-to-human experiments provide sup-

port for the conclusions of Kalkancı et al.’s human-to-
computer experiments as well as extend their results
to more general settings. When we compare different
types of contracts, we observe that contract type has
no significant effect on supplier, buyer, and total sup-
ply chain profits, with the exception that the two-
price contract leads to higher profits for the supplier
than a one-price contract in human-to-computer
experiments.2 That is, even when there is potential
improvement to suppliers’ profits from using quan-
tity discounts, this improvement is captured with a
low number of price blocks. Furthermore, when
human-to-human interactions and strategic anticipa-
tions are considered, the simplest contract works as
effectively as the more complex ones for suppliers.
In both human-to-computer and human-to-human

experiments, suppliers earn significantly less (with
the exception of one-price contract in human-to-com-
puter experiments) and buyers earn significantly
more than what theory predicts. That is, there is a
more equitable distribution of profits between suppli-
ers and buyers compared with what is theoretically

predicted. Furthermore, total supply chain is signifi-
cantly higher (with the exception of three-price con-
tract in human-to-human experiments) than what
theory predicts. Therefore, statistically speaking,
human subjects do not achieve better coordination
with more complex quantity discount contracts, but
they do achieve better coordination than theory pre-
dicts.3

Note that for our profit comparisons we excluded
rejected contract offers. When the rejections are
included, we observe that one-price and three-price
treatments are similar in terms of supplier and total
supply chain profits (two-sided p-value: 0.61 and 0.28,
respectively). The two-price treatment, on the other
hand, leads to significantly lower supplier and total
supply chain profits (p-values are 0.04 for the compar-
isons with one-price and three-price treatments). We
observe no significant difference in buyer’s profits
under the three treatments (two-sided p-values are
0.62, 0.96, and 0.64 for one-price and two-price, two-
price and three-price, and one-price and three-price
treatment comparisons, respectively). All our obser-
vations regarding profit comparisons with theory
remain the same.

5. Behavioral Results

In the absence of social preferences, Kalkancı et al.
(2011) identify reinforcement and bounded rationality
as key biases that impact human subjects’ decisions.
In this section, we consider the behavioral drivers of
the results in our human-to-human experiments.

5.1. Suppliers Offer More Favorable Contracts to
Human Buyers Compared with Computerized
Buyers
In both human-to-computer and human-to-human
experiments, suppliers chose lower prices compared
with the theoretical predictions under all contracts

Table 3 Means and Standard Deviations (in Parentheses) for Supplier, Buyer, and Total Supply Chain Profits in Human-to-Human and Human-to-
Computer Experiments (Rounded to the Nearest Integer) and Comparison of Respective Human-to-Human and Human-to-Computer Profits
with Theoretical Predictions in Table 1

Human-to-human
Human-to-human (including rejected contracts) Human-to-computer

Supplier Buyer Total Supplier Buyer Total Supplier Buyer Total

One-price 7626 3310��� 10,839��� 7471 3247��� 10,633��� 6722��� 3270��� 9992���

(1124) (552) (2876) (4342) (4124) (6209.65) (540) (1314) (888)
Two-price 7538��� 3708��� 11,312��� 6897��� 3412��� 10,620�� 7065��� 2841��� 9906�

(2286) (806) (2973) (4205) (747) (3217) (480) (1382) (1094)
Three-price 7726��� 3478��� 10,736�� 7411��� 3366��� 10,381� 6840��� 3619��� 10,459

(1747) (1302) (4112) (3942) (1298) (4141) (727) (1830) (1320)

Note. For the significant values in bold (roman), experimental profits are lower (higher) than theoretical predictions.
Significance levels: ***p = 0.001, **p = 0.01, *p = 0.05.
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(Figure 2); two-sided Wilcoxon tests comparing the
median of the average prices with its theoretical pre-
diction also support this conclusion at a significance
level under 0.05 for all tests. Suppliers also had diffi-
culty setting the correct price breaks (Figure 3). At
optimality, the discount scheme should be set such
that for medium and high types of the buyer the opti-
mal procurement quantity should be at the price
break in the three-price treatment (Table 1). That is
not the case in the experiments: in the human-to-
human setting, out of a total of 111 (112) high (med-
ium)-demand type occurrences, a rational buyer’s
order quantity would be equal to the correct quantity

break in only 43 (16) cases.4 Furthermore, we observe
that prices and price breaks set by human suppliers
are closer to the midpoints of the decision ranges. This
behavior is consistent with the midpoint bias under
bounded rationality observed in newsvendor models
for the buyer’s decisions (Su 2008). Although this
behavior may limit the supplier’s ability to separate
different types of the buyer and to extract profits, it
actually reduces the inefficiency in the system and
increases the total profits compared with theory.
When we compare the supplier’s decisions in

human-to-human and human-to-computer experi-
ments using Wilcoxon tests, we see that prices are not
significantly different from each other (two-sided
p-values are 0.418 for w1 comparison of the one-price
treatment; 0.935 and 0.285 for w1 and w2 comparisons
of the two-price treatment; and 0.86, 0.90, and 0.98 for
w1, w2, and w3 comparisons of the three-price treat-
ment, respectively). However, all price breaks are
statistically lower in human-to-human experiments
(p-values are 0.051 for Q1 comparison of the two-price
treatment and 0.065 and 0.060 for Q1 and Q2 compari-
sons of the three-price treatment, respectively). These
contracts are more favorable to buyers than those
offered in human-to-computer experiments because
buyers can achieve discounts at lower quantities. As
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the only difference between human-to-human and
human-to-computer experiments is that humans,
instead of computers, assume the role of the buyer,
we argue that the most probable drivers for any
differences between these two sets of experiments are
social preference effects. Indeed, our results are con-
sistent with this interpretation, as we discuss in more
detail in section 5.4.
Interestingly, even though suppliers select more

favorable price breaks under human-to-human exper-
iments than under human-to-computer experiments,5

when we compare the initial decisions between
human-to-human and human-to-computer experi-
ments, we do not observe any significant differences.
Therefore, the differences between price breaks under
these two experiments are caused by the interactions
between suppliers and human buyers. While suppli-
ers are boundedly rational with respect to break point
decisions, they do seem to understand, at least con-
ceptually, the impact of their decisions on buyers’
order quantities over time, and they adjust their deci-
sions due to social preferences. Therefore, the differ-
ences in the decisions over time can be attributed to
buyers’ behavior and its impact on the decisions of
suppliers.

5.2. Buyers Cannot Fully Take Advantage of the
More Favorable Contracts Offered by Suppliers
A comparison of supplier, buyer, and total profits
between our experiments and human-to-computer
experiments by Kalkancı et al. (2011) reveals that
profits are not significantly different in most cases.6

The only exception is the buyer’s profit in the two-
price treatment, which is significantly higher in
human-to-human experiments (p-value 0.03). How-
ever, when we replace buyers with a hypothetical
rational buyer who maximizes her expected profits
(means and standard deviations (in brackets) for
rational-buyer profits are 3900 [580], 4300 [442], and
4035 [1244] under one-price, two-price, and three-
price treatments, respectively), the rational buyer
would in fact make significantly higher profits under
all contracts compared with human-to-human
experiments (p-values are 0.004, 0.004, and 0.002 in
Wilcoxon tests, respectively) and under the one-price
and two-price contracts compared with human-to-
computer experiments (p-values are 0.022 and 0.002
in Wilcoxon tests, respectively). That is, suppliers

offer more favorable contracts to human buyers,
although buyers may not be able to take advantage of
them.
This observation also provides strong evidence that

human buyers, just like human suppliers, are bound-
edly rational and that they deviate from the expected-
profit-maximizing behavior. Indeed, we observe that
under the one-price contract, buyers deviate from the-
ory and significantly over-order, particularly when
they have medium or high types (at a 0.01 significance
level) (the details of the analysis are provided in sec-
tion 5.3). Note that a higher order quantity leads to
higher profits for suppliers as well as for the supply
chain. Therefore, buyers’ over-ordering behavior
under the one-price contract can be tied to our results
in section 4 and helps us explain why this contract
performs effectively compared with other contracts in
our experiments.

5.3. Buyers Exhibit Mean Demand Anchoring and
Demand Chasing Behaviors
As shown in the previous section, human buyers act
boundedly rational, and they deviate from the
expected-profit-maximizing behavior. We use a
regression model to characterize the difference
between the buyer’s actual order quantity and the
expected-profit-maximizing order quantity consider-
ing the impact of the demand type, contract type, and
variation among buyers:

Dj
i;t ¼ Interceptþ bQD2 �QD2þ bQD3 �QD3þ bM �M

þ bH �H þ bQD2�M � ðQD2�MÞ
þ bQD2�H � ðQD2�HÞ þ bQD3�M � ðQD3�MÞ
þ bQD3�H � ðQD3�HÞ þ mi þ �i;t:

The dependent variable Dj
i;t is the difference

between the buyer’s order quantity and the best-
response quantity under a j-price contract
(j = 1,2,3), considering the effects of each individ-
ual buyer i and period t. (We do not consider the
effect of time trend; however, when period is added
to the regression model, it turns out not to be signif-
icant and the general conclusions remain valid.) The
independent variables are defined similarly to the
ones in Equation (3), with the exception that mi
represents the variability between buyers. Table 4
displays the regression estimates.

Table 4 Regression Coefficients and Standard Errors (in Parentheses) for the Difference between the Buyer’s Order Quantity and the Best-Response
Quantity Conditional on Contract Acceptance

Variable Intercept M H QD2 QD3 QD2 9 M QD2 9 H QD3 9 M QD3 9 H Std. dev. of mi

Difference 3.59 5.10 5.41 1.41 4.00 �12.88�� �8.99� �11.01� �8.69� 8.22���

(3.70) (3.07) (3.11) (5.31) (5.04) (4.45) (4.46) (4.32) (4.35)

Significance levels: ***p = 0.001, **p = 0.01, *p = 0.05
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We then use linear hypothesis testing to estimate
the differences between the actual and theoretical
order quantities (as shown in Table 5). We find that
under the one-price contract, buyers deviate from the-
ory and significantly over-order, particularly when
they have medium or high types (at a 0.01 significance
level). However, we fail to see any systematic
differences in actual order quantities and the
best-response quantities in the two-price and three-
price treatments.
Decision biases in the newsvendor setting as out-

lined by the behavioral operations management liter-
ature can be used to explain the differences in the
buyer’s behavior across different treatments. The
existing behavioral operations management literature
shows that under the newsvendor setting, human
subjects make their decisions consistent with (i) mean
demand anchoring and (ii) demand chasing. In our
experiments, the buyer’s problem in each period is
equivalent to the newsvendor setting in the one-price
treatment. Consistent with the existing results, we
observe that buyers order more than the best response
when the buyer’s best response is below the mean
demand in this treatment. As this is prevailing in the
one-price treatment (i.e., in 284 of 311 instances in the
one-price treatment, the buyer’s best response is
below the mean demand), mean demand anchoring
leads to significant over-ordering in the one-price
treatment.
Under the two-price and three-price treatments,

suppliers price and price break decisions may lead to
a best-response quantity above or below the mean
demand: for example, we have 193 (209) instances
where the mean demand is above the best response

and 85 (100) instances where the mean demand is
below the best response in the two-price (three-price)
treatment. In the region where mean demand is above
(below) the best response, we see significant over-
ordering (under-ordering). These effects, however,
tend to cancel out each other and therefore we cannot
see any significant difference between the actual and
best-response quantities when we consider the
buyer’s overall ordering behavior. Interestingly, the
mean absolute deviations between the actual order
quantities and the best responses are 15.76, 16.63, and
18.18 for one-price, two-price, and three-price treat-
ments, respectively. These values are not significantly
different from each other (p-values are 0.73, 0.51, and
0.31 for the comparisons of one-price and two-price,
two-price and three-price, and one-price and
three-price pairs of contracts, respectively). This
observation is consistent with our interpretation of
complexity with respect to the NK model, according
to which the complexity for the buyer is the same
across treatments.
To validate that these decision biases are significant

in our experiments, we test mean demand anchoring
and demand chasing models. The mean demand
anchoring model is represented by

qi;t ¼ a� li;t þ ð1� aÞ � bri;t þ mi þ �i;t;

where a is estimated in the model, qi;t is the quantity
for subject i in period t, li;t is the mean demand for
subject i in period t, bri;t is the best-response quan-
tity for subject i in period t, mi is the random-effects
term for subject heterogeneity, and �i;t is the error
term for subject i.
To capture demand chasing, we utilize a partial

linear adjustment model (as outlined by Bostian et al.
2008):

ðqi;t � li;tÞ ¼ ðqi;t�1 � li;t�1Þ þ b� ðD̂i;t�1 � li;t�1Þ þ mi
þ �i;t;

where b is estimated in the model and D̂i;t�1 is the
realized demand for subject i in period (t � 1).
Table 6 shows the results of the estimated parame-

ters. We see traces of both of these behavior patterns
in our experiments. The parameters of each model

Table 5 Estimates and Standard Errors (in Parentheses) for the
Difference between the Buyer’s Order Quantity and the Best-
Response Quantity Conditional on Contract Acceptance

Low Medium High

One-price 3.59 8.69�� 9.00��

(3.70) (3.54) (3.57)
Two-price 5.00 �2.79 1.41

(3.80) (3.57) (3.56)
Three-price 7.59� 1.68 4.31

(3.41) (3.32) (3.32)

Significance levels: **p = 0.01, *p = 0.05

Table 6 Model Coefficients for Buyers in One-Price, Two-Price, and Three-Price Treatments and Their Significance Levels

Mean demand anchoring Demand chasing

Treatment a rðmi Þ AIC LLK b rðmi ) AIC LLK

One-price 0.25��� 7.6��� 2726.3 �1360.15 0.37��� 3.05 2848.23 �1421.12
Two-price 0.59��� 9.03��� 2584.34 �1289.17 0.39��� 5.52� 2648.49 �1321.24
Three-price 0.63��� 8.8��� 2694.77 �1344.98 0.29��� 0.001 2784.34 �1389.17

Note. LLK = log likelihood; AIC = Akaike information criteria.
Significance levels: ***p = 0.001, *p = 0.05
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under each treatment are significant. However, mean
demand anchoring provides a better fit to our obser-
vation, resulting in better model selection criteria
such as log likelihood (LLK) and Akaike information
criteria (AIC).
On the basis of these observations, we conclude that

even though quantity discounts are supposed to lead
to higher buyer ordering in theory, over-ordering in
the one-price treatment can help to close the gap
between price-only contracts and quantity discount
contracts in our experiments and further contributes
to the limited benefit from complexity in supplier and
total profits.

5.4. We Find Partial Support for Fairness Concerns
in Buyers’ Ordering Behavior
We observe many instances where buyers chose not
to buy especially when faced with relatively high
prices even if the expected-profit-maximizing
decision would be to buy; that is, they rejected the
contract offered by the supplier. Buyers rejected 1.9%,
7.5%, and 3.8% of the contracts in the one-price, two-
price, and three-price treatments, respectively. This
behavior is also consistent with social preference
effects, as subjects rejected money-making offers
when they considered them unfair. Our analysis
shows that the rejected offers, on average, tend to
have lower absolute and relative profits overall com-
pared with other offers. This result is statistically sig-
nificant at the 0.05 level for one of three players (who
occasionally rejected the contract offers) in the one-
price treatment, three of six in the two-price
treatment, and two of four subjects in the three-price
treatment. Note that we did not explicitly control for
different types of social preferences, that is, fairness,
altruism, and reciprocity.
To examine if the buyer’s ordering behavior is

mainly driven by fairness concerns, we estimate the
following model in each of our treatments: For each
possible order quantity q (including q = 0), we
assume that the buyer’s utility UBð�Þ is a function of
the buyer’s and the supplier’s expected profits (pBðqÞ
and pSðqÞ, respectively) and is given by

UBðpBðq;DÞ; pSðq;DÞja; cÞ
¼ pBðq;DÞ � amaxðcpSðq;DÞ
� pBðq;DÞ; 0Þ:

ð4Þ

In this equation, a is the fairness parameter and c is
the coefficient of the supplier’s share that is
perceived as fair by the buyer. This utility structure
closely follows Cui et al. (2007). Unlike their model,
we do not include an additional term to capture the
buyer’s inequality aversion if she expects to earn
more than her supplier, as past research has shown
that “subjects suffer more from inequity that is to

their monetary disadvantage” (Fehr and Schmidt
1999). We choose to do that so as to prevent over-
parametrizing the model.
Given the buyer’s utility function, we assume that

the buyer makes a probabilistic choice from the set of
possible order quantities. Due to the heterogeneity in
the subject pool, we used a mixed-effects model
together with the fairness and bounded rationality
model in Equation (4). We assume that each of the
fairness parameters, a and c, follows a lognormal dis-
tribution (with means la and lc and standard devia-
tions ra and rc for a and c, respectively). We use
lognormal instead of normal distribution to capture
the non-negativity and the heavy right tail of the
parameters. Each participant i also has a bounded
rationality parameter �i. We maximize the likelihood
of the experimental observations over the participant
pool, which can be calculated as

max
la;ra;lc;rc;�1;���;�n

Z 1

0

Z 1

0

Y
i

Y
t

Probðxi;tja¼al;c¼ ck;�iÞ

� fðaljla;raÞgðckjlc;rcÞdaldck:

Here, i is the index for participants, t is the index
for the period in the experiment, xi;t is the player’s
decision at period t, and Prob(�) is the probability
function (which follows the logit form):

Probðxi;tja ¼ al; c ¼ ck; �iÞ
¼ e�iED½UBðpBðxi;t;DÞ;pSðxi;t;DÞjal;ckÞ�P

q e
�iED½UBðpBðq;DÞ;pSðq;DÞjal;ckÞ� :

Using this model, we obtain more stable parameters
for a and k than estimating these parameters for
each participant separately. Table 7 shows the esti-
mated model parameters.
We find some support that the design of the experi-

ments affects the parameters. For example, one-price

Table 7. Model Coefficients for Buyers in One-price, Two-price, and
Three-price Treatments.

One-price Two-price Three-price

�1 0.11 0.43 0.28
�2 1.35 0.67 0.28
�3 0.78 0.55 0.34
�4 0.13 0.54 0.33
�5 0.36 1.62 0.39
�6 0.13 2.82 0.36
�7 0.93 0.35 0.75
�8 0.80 0.51 0.44
�9 0.85
�10 0.63
laðraÞ 1.01 (0.15) 1.19 (0.78) 1.01 (0.15)
lcðrcÞ 1.16 (0.68) 1.20 (0.80) 1.23 (0.89)

Note. All λ values are scaled by 1000 to improve exposition.

Kalkancı, Chen, and Erhun: Complexity as a Contract Design Factor
280 Production and Operations Management 23(2), pp. 269–284, © 2013 Production and Operations Management Society



and two-price treatments are not significantly differ-
ent from each other in terms of the buyer’s bounded
rationality parameter, whereas the bounded rational-
ity parameter under the three-price treatment is sig-
nificantly lower than that of the two-price treatment
at the 0.05 level using a Wilcoxon test. This observa-
tion provides some support that complexity reduces
the precision in decision making. Note that buyers
were provided with a decision support tool and that
the number of possible decisions remains constant
across treatments. Thus, the difficulty of the decision
tasks may have been equalized to a degree across
treatments. Nevertheless, we do find some differences
between two-price and three-price treatments.
We observe evidence for fairness concerns, as the

means of a are at least 1 in all treatments. The actual
fair point for participants can vary significantly, as
the standard deviation of c is quite large compared
with its mean in all treatments. The estimated param-
eters complement our findings from the rejection rates
in that the stronger evidence for fairness concerns is
obtained under the two-price treatment while we also
observe a higher variability for this treatment.

5.5. We Find Partial Support for Higher Supplier
Beliefs on Fairness Concerns in Human Buyers’
Ordering Behavior
We use a two-stage behavioral model to capture sup-
pliers’ decisions. In the second stage, buyers make
probabilistic choice in the standard quantal response
formulation, with a utility function given by Equation
(4). There are three parameters for each buyer: the
bounded rationality parameter �b, the fairness param-
eter a, and the coefficient of the supplier’s share that
is perceived to be fair c. In the first stage, the supplier
can calculate the expected utility associated with
every decision, given the quantal response decision
probabilities of the buyer in the second stage. The
supplier then chooses a decision based on the same
probabilistic choice framework and these expected
utilities. The supplier has one parameter �s for
bounded rationality. We estimate these four parame-
ters only from suppliers’ decisions. Thus, the parame-
ter estimates of ð�b; a; cÞ are the beliefs of the supplier
on how the buyer would react instead of the true
parameters of the buyer.

max
�s;�b;a;c

Y
t

e
�sEl

�P
q
ED½pSðwt;q;DÞ�Probðqj�B;l;a;c;wtÞ

	
P

w e
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q
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In this problem, wt describes the decision vector of
the supplier at period t. The summation in the

denominator of the objective function is over the set
of possible decisions (where w denotes a decision
vector in this set). Note that, because of the high
dimensionality of decisions in our two-price and
three-price treatments, we discretized each price
decision in a step size of 10 (k ¼ 40 � w3 � w2 �
w1 � p ¼ 200) and each quantity break in a step
size of 5 (0 � q1 � q2 � 180). We rounded each
actual decision by the supplier to the nearest deci-
sion in the subset decision space we are considering.
Table 8 summarizes the parameter estimates.
We found that even when the suppliers interact

with computerized buyers, they have fairness con-
cerns, as a is significant for almost all players even in
human-to-computer experiments. Moreover, a is sig-
nificantly higher in human-to-human experiments
compared with human-to-computer experiments for
the one-price and two-price treatments at the 0.05 level
with a Wilcoxon test. This is partial support that sup-
pliers believe that human buyers have higher fairness
concerns than computerized buyers, which is consis-
tent with the intuition that human suppliers would
attach more importance to social preferences when
they face human (as opposed to computerized)
buyers. The comparison, however, is not significant
for the three-price setting. We speculate that in the
three-price setting, complexity of the contract deci-
sions overwhelms other considerations, and the
suppliers no longer focus on the fairness concerns of
the buyers.
All other comparisons between beliefs on buyers’

behavioral parameters are insignificant. In addition,
�s, the suppliers’ bounded rationality parameter, is
significantly higher in the one-price setting for
human-to-computer experiments compared with
human-to-human experiments. It is partial support
that suppliers can make better decisions facing com-
puters instead of another human. This difference is no
longer significant when contracts become more com-
plex in the two-price and three-price settings. Table 9
summarizes all comparison statistics.7

6. Concluding Remarks

Despite being theoretically suboptimal, simpler con-
tracts (such as price-only contracts and quantity dis-
count contracts with a limited number of price blocks)
are commonly preferred in practice. Thus, exploring
the tension between theory and practice regarding
complexity and performance in contract design is
especially relevant. Using human subject experiments,
Kalkancı et al. (2011) showed that such simpler con-
tracts perform effectively for a supplier interacting
with a computerized buyer under asymmetric
demand information. We use a similar set of experi-
ments with the modification that human suppliers
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interact with human buyers. Like Kalkancı et al., we
test the key theoretical predictions that increasing the
complexity of contracts employed improves suppli-
ers’ profits and supply chain efficiency while decreas-
ing buyers’ profits. Similar to Kalkancı et al.’s results,
our experimental findings contradict these predic-
tions. First, we find that increasing the complexity of
the contract does not increase suppliers’ profits. Fur-
thermore, the price-only contract achieves equal total
supply chain profits compared with more complex

quantity discount contracts. Finally, we observe a
more equitable distribution of profits between suppli-
ers and buyers. As such, our human-to-human experi-
ments provide support for the conclusions of
Kalkancı et al.’s human-to-computer experiments and
extend their results to more general settings. Based on
human-to-computer and human-to-human experi-
ments, we conclude that there is a non-trivial trade-
off between complexity and inefficiency of all-unit
quantity discount contracts: the notion that complex

Table 8 Model Coefficients for Buyers in One-Price, Two-Price, and Three-Price Treatments and Significance Levels of these Coefficients Compared
with Their Rational Values (1000 for k, 0 for a, and 1 for c)

One-price Two-price Three-price

Player �b a c �s �b a c �s �b a c �s

Human-to-computer experiments
1 0.02 108.55 1.11� 4.63 0.43 0.10 1.78 5.65 0.45 41.76 0.46 19.09
2 3.12 4.38 0.33 3.26 0.51 1.40 0.59 7.02 0.79 0.06 1.18 2.72
3 1.72 0.71 1.64 10.64 0.13 4.06 0.70 48.73 0.09 0.98 2.23 5.13
4 67.30 0.03�� 0.91 25.48 0.11 1.25 2.07�� 6.13 0.39 0.87 1.02 8.34
5 16.81 0.74� 0.01� 4.52 1.37 0.12 1.00 2.80 0.00 1.59 98.24 7.89
6 29,470.47 0.26 0.33� 10.03 1.95 0.00�� 244.75 1.53 0.60 0.20 1.00 4.37
7 0.28 128.66 1.00 1.18 0.55 0.00 3937.59 12.43
8 0.11 1.20 2.72 3.67 0.03 19.52 0.33 2.23 0.30 14,056.00 0.60 11.42
9 0.06 16.44 0.45 6.77 0.01 0.54�� 31.87�� 2.64 0.92 0.02 1.00 2.85
10 196.96 0.25 0.33 1.83 0.23 2.49 0.78 7.00 2.07 3.95 0.07 1.62
11 1.15 1.48 0.65 36.58 0.66 0.00 1.00 0.69 0.17 1.31 2.26 10.89
12 652.75 0.00 79.01 9.24 0.71 0.00 2332.49 5.83 0.29 2.46 0.91 12.25
13 3.93 0.41 1.00 3.70 0.52 0.07 1.58 4.52 0.56 8.56 1.38� 11.88
14 6.62 56.11 0.14 5.62 0.46 0.33 4.82 5.38 2.12 8.54 0.68 9.73
15 2.10 0.32 0.99 3.43 0.41 0.36 2.87 14.90 14.01 0.30 2.60 4.19
16 11.42 9.06 0.07 1.15 0.98 0.00 1076.39 3.97 0.72 0.01 1.00 4.27
17 3.10 0.49 1.37 3.83 0.25 0.36 1.00 6.27
18 0.92 77.52 1.00 1.48 0.08 0.00 1.00 2.45 0.47 3.09 0.50 4.04
19 3.02 1.23 1.00 12.57 0.21 0.62 1.35 1.93 0.69 0.26 1.00 6.79
Human-to-human experiments
1 3.06 25,839.47 0.33 5.47 0.15 4.30 3.00 3.95 6.92 9.11 0.86 2.56
2 0.03 24.20� 0.25 1.37 0.97 0.95 0.93 0.00 1.00 1.02 1.02 0
3 114.60 0.17 0.94 0.50 1.99 11.10 0.15 1.15 0.00 1.33 35.59 6.71
4 0.00 1101.49 0.33 0.97 0.83 115.41 0.14 1.41 1.08 0.00 836.40 2.71
5 7.15 14.38 23.11 0.00 0.01 1.04 26.68 4.46 0.13 2.80 0.49 14.93
6 0.55 1.05 0.88 2.29 1.54 0.55 0.49 3.68 0.21 3.60 1 29.06
7 1.48 40.07 0.33 2.25 0.20 1.26 0.78 4.54 26,236 2.14 0.52 4.62
8 0.34 196.71 31.00 5.83 0.79 0.03 6.05 5.76 0.17 2.90 0.52�� 16.46
9 42.38 3.66 0.48�� 1.25
10 0.91 2.29 0.45 0.85

Note. The significance levels of each coefficient are calculated using a log-likelihood ratio test. All λ values are scaled by 1000 to improve exposition.
Significance Levels: The values that are not significant are in gray boxes. **p = 0.01, *p = 0.05. All other entries are significant at the 0.001 level.

Table 9 Comparison Statistics of Model Coefficients for Buyers in One-Price, Two-Price, and Three-Price Treatments in Human-to-Computer and
Human-to-Human Experiments

�b a c �s

One-
price

Two-
price

Three-
price

One-
price

Two-
price

Three-
price

One-
price

Two-
price

Three-
price

One-
price

Two-
price

Three-
price

HTC 3.12 0.83 0.51 1.23 0.95 1.15 1.00 1.01 0.93 4.52 2.95 4.66
HTH 1.02 0.81 1.00 32.13 1.15 2.55 0.60 0.86 0.63 1.81 3.82 3.18
p-value 0.24 0.32 0.47 0.02 0.02 0.41 0.42 0.16 0.42 0.01 0.13 0.83

Note. p-values in bold are one-sided and are significant at the 0.05 level; Other p-values are two-sided.
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contracts can optimize the supplier’s profit is flawed
and requires deeper consideration.
In the absence of social preferences, Kalkancı et al.

argue that reinforcement and bounded rationality are
key biases that impact subjects’ decisions. In human-
to-human experiments, we find evidence that
suppliers provide better contracts to human buyers,
compared with a computerized one, by giving her
discount breaks that would trigger the discount
sooner. We also observe many instances where buyers
choose not to buy even if the expected-profit-maxi-
mizing decision would be to do so; that is, they reject
contracts that they consider to be unfair. These behav-
iors of suppliers and buyers can be interpreted as
social preference effects. However, these effects may
be secondary to bounded rationality, as profit splits
between suppliers and buyers are not more equitable
in human-to-human experiments, once again high-
lighting the importance of considering complexity as
a contract design factor.
In addition to providing validation for Kalkancı

et al.’s human-to-computer experiments, human-to-
human experiments further our understanding of
when automating some players in an experiment
makes a difference and when it does not. First, we
find that suppliers have fairness concerns even when
they interact with computerized buyers. These fair-
ness concerns tend to be even stronger when suppli-
ers interact with human buyers, particularly when the
complexity of the contract is low. We also find that
suppliers are more prone to random decision errors
(i.e., bounded rationality) when interacting with
human buyers.
It is evident from our experiments that bounded

rationality is an important factor in explaining the
behavior of our subjects. Moreover, changing contract
complexity plays a role in shaping the bounded ratio-
nality of players. This can easily be seen in the sup-
plier’s behavior as the number of decisions the
supplier has to make increases with complexity.
However, as the supplier’s problem is not affected by
the state of the environment, suppliers can anchor to
their previous decisions, which can be explained well
by an experience-weighted attraction learning model
(Camerer and Ho 1999, Kalkancı et al. 2011). Thus, it
would be interesting to consider the complexity-
dependent bounded rationality of both parties theo-
retically. One approach is to model the interactions,
under different contracts, with quantal response equi-
librium, modified to capture social preferences.
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Notes

1In this case, mechanism design focuses on one dimension
of design choice (i.e., the level of contract complexity) and
should not be confused with the traditional principal–
agent theory where the whole payment schedule is deter-
mined. We use the term “mechanism design” in a broader
sense.
2Note that human-to-computer experiments show that
subjects, albeit not perfectly, can understand and take
advantage of the more complex two-price contract. Thus,
the failure to do so in human-to-human experiments
points to reasons beyond subjects not understanding the
mechanics of the discount contract.
3Our analysis is based on the average profits, which corre-
spond to period t� ¼ 20 profits in the one-price and two-
price experiments and to period t� ¼ 17 profits in the
three-price experiment in the human-to-human setting. To
check for the robustness of our observations, we replicated
the analysis using t� ¼ 40 in the one-price and two-price
experiments and t� ¼ 33 in the three-price experiment.
We observe that our conclusions for supplier and buyer
profits remain the same. We see a reversal of our result in
total supply chain profit comparisons under the one-price
and the three-price treatments. Total supply chain profits
under the three-price treatment are higher than total prof-
its under the one-price treatment with the new t�; the
other observations on total supply chain profits remain
the same. As our aim is to understand the supplier’s con-
tract design problem, we conclude that our main manage-
rial insights do not change with the choice of t�.
4Similar to Kalkancı et al.’s (2011) experimental design,
subjects in our experiments are allowed to use price-only
contracts in the two-price and three-price treatments even
though this option is not publicized. Kalkancı et al. report
that 1 of 19 subjects in their two-price treatment and 1 of
19 subjects in their three-price treatment consistently
reduced the contracts that they offered to one-price and
two-price, respectively. The former subject performed bet-
ter than the average and the latter subject performed
worse than the average. In our experiments, one supplier
reduced a three-price contract to a two-price contract by
setting a prohibitively high second price break in 5 of 33
instances. This observation shows that at least some sub-
jects were aware of that option. However, in majority,
they chose not to use it.
5We are unaware of any explanations in the literature as
to why suppliers would choose to provide a more favor-
able price break, instead of more favorable prices, to buy-
ers. In a related set of experiments where human
suppliers interact with computerized buyers, Kalkancı
et al. (2011) observe that suppliers are not able to separate
out different types of the buyer by using the price breaks
effectively, and the price breaks, if improved, would lead
to the highest improvement in suppliers’ profits. This can
be interpreted as a difficulty on the suppliers’ part to
make price break decisions. In a human buyer to human
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supplier setting, we speculate that the interaction of the
difficulty of setting price breaks and the learning dynam-
ics driven by the human buyer’s social preferences may
lead suppliers to make inferior price break decisions for
themselves, which is favorable to their buyers.
6We use Wilcoxon tests to compare the mean profit per
period among supplier–buyer pairs. Two-sided p-values
are 0.24, 0.26, and 0.11 for the supplier’s profit comparison
under one-price, two-price, and three-price treatments,
respectively. Similarly, p-values for total profits are 0.31,
0.3, and 0.74, respectively. The buyer’s profits are not
significantly different under one-price and three-price
treatments, with p-values of 0.42 and 0.84.
7To check the robustness of the significance results for the
a parameter in Table 9, we repeated our analysis by
removing the outliers. In particular, we removed players
1, 7, 14, and 18 from one-price human-to-computer treat-
ment and players 1, 4, and 8 from the one-price human-
to-human treatment. The a value is still significantly
higher under human-to-human treatment at the 0.07 level.
Similarly, if player 4 is removed from the two-price
human-to-human treatment and the a values are com-
pared for the human-to-human and human-to-computer
experiments, the a value in the human-to-human treat-
ment is significantly higher at the 0.04 level.
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