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Jumps and Information Flow in Financial Markets

Abstract

This paper investigates the predictability of jump arrivals in U.S. stock markets.

Using a new test that identifies jump predictors up to the intraday level, I find that

jumps are likely to occur shortly after macroeconomic information releases such as

Fed announcements, nonfarm payroll reports, and jobless claims as well as market

index jumps. I also find firm-specific jump predictors related to earnings releases,

analyst recommendations, past stock jumps, and dividend dates. Evidence suggests

that distinguishing systematic jumps from idiosyncratic jumps is possible using the

characteristics of jump predictors. Finally, I present a short-term jump size clustering.

JEL classification: G10, C14

Key words: mixed unobservability, jump predictor tests, partial likelihood, systematic vs. id-

iosyncratic risk, jump size clustering, high frequency data



Much recent research in finance has found empirical evidence of jumps in equity returns. Their

presence has been successfully used to better explain various market phenomena.1 Nevertheless,

the role of real-time information for predicting jumps in stock markets has not been thoroughly

investigated in the literature. In this article, I analyze the predictability of jumps in individ-

ual stock returns, using both macroeconomic and firm-specific news releases and I present how

the information is reflected in stock prices as jumps.2 This analysis naturally allows a novel

decomposition of individual stock jumps into systematic and idiosyncratic jumps.

To accomplish this goal, I identify important jump predictors and assess their relative impor-

tance and precision for the purpose of developing stochastic jump intensity models. Assuming

that an individual equity price follows a jump diffusion process with stochastic jump intensity,

I must resolve the econometric problem of identifying jump predictors using discrete data from

continuous-time models. I refer to this as the mixed unobservability problem. It arises from the

simultaneous presence of two unobservability problems. The first is caused by the difficulty we

usually face when making an inference for a continuous-time jump counting process (without dif-

fusion) using discrete observations. The second problem results from the presence of the diffusion

process. The mixture of these two makes jumps in jump diffusion models unobservable; thus, the

identification of jump predictors becomes difficult.

As a resolution, I propose an inference technique called the Jump Predictor Test (JPT). It

allows us to estimate a regression-type jump intensity model and apply standard hypothesis tests

in order to identify significant jump predictors. In this way, we can predict ex ante whether jumps

are likely to occur, what kind of jumps are more likely to occur, and when they are more likely to

occur, given the available information. The idea underlying this JPT is simple. I first detect the

location of jumps from the return series by multiple nonparametric jump detection tests.3 This
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is a necessary step before applying the JPT. Then, I suggest a likelihood inference for the JPT

using time-series data for both jumps and information covariates. I prove that this technique

asymptotically makes the effect of the mixed unobservability problem negligible, allowing good

jump predictors to be identified. I discuss a theory of likelihood inference justifying this approach

and provide a guide for tests and general applications.

Using the JPT, an empirical study is performed to refine our understanding of how jumps in

U.S. individual stock returns respond to market information releases. Using high frequency data

from January 4, 1993 to December 31, 2008 for Dow Jones Industrial Average component stocks, I

demonstrate that jumps are predictable to some extent. I link stochastic jump arrivals to the most

important predictors related to four macroeconomic and four firm-specific information variables:

U.S. Federal Open Market Committee (FOMC) decisions, overall market jumps detected in the

S&P 500 market index, U.S. nonfarm payroll employment reports, initial unemployment claims,

earnings releases, analyst recommendations, dividend dates, and past jump arrivals for each firm.

Jumps are likely to occur within a short time horizon such as 30 minutes following macroe-

conomic information releases. The indicator for the 30 minutes following FOMC announcements

turns out to be the most influential predictor of U.S. individual stock jumps, followed by overall

market jumps. Macroeconomic predictors tend to play a more important role in pinning down

intraday jump dynamics for individual stocks than do firm-specific predictors, evidence which has

not been clearly uncovered in the literature. The JPT enables us to uniquely capture an unusual

impact of real-time information on price jumps up to the intraday level, which is difficult to show

with conventional methodologies.

I also find that firm-specific predictors perform differently from macroeconomic predictors.

The firm-specific predictors are indicators for time horizons within one day before earnings re-
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leases, within the first 30 minutes following analyst recommendations, within three hours of the

arrival of previous jumps in the same stock, and within the morning hours of ex-dividend dates.

The jump probability being higher within one day before earnings releases suggests the possibility

of information leakage before the pre-scheduled announcements.

I further investigate the role of information characteristics in distinguishing systematic jumps

from idiosyncratic jumps. This distinction between systematic jumps and idiosyncratic jumps

is expected to be beneficial in portfolio or risk management, with better understanding of the

determinants of non-diversifiable risk in highly volatile markets. After classifying systematic and

idiosyncratic jumps, I separately estimate the systematic and idiosyncratic jump intensity models

for each firm, where all the aforementioned predictors are used. I find that all the macroeconomic

information predictors remain strongly significant for systematic jumps, emphasizing their impor-

tant role in systematic jump prediction. Idiosyncratic jumps are strongly induced by earnings and

analysts’ recommendation releases. In general, idiosyncratic jump prediction is less precise than

systematic jump prediction using the available information. Finally, I use the JPT methodology

to investigate jump size dynamics, showing that they tend to cluster by size. This simple appli-

cation demonstrates the possibility of the JPT being applied to other studies on jump modeling

using various types of jumps in other markets.

The remainder of the paper is organized as follows. Section 1 sets up the general theoretical

framework. Section 2 explains the inference theory for the JPT. Section 3 reports the JPT’s

finite sample performance. Readers who are interested mainly in application of the JPT may

turn directly to Section 4, which presents the empirical evidence. Section 5 concludes.
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1 Theoretical Model

I employ a one-dimensional asset return process with a complete probability space (Ω,Ft,P),

where Ω is the set of market events, {Ft : t ∈ [0, T ]} is an information filtration4 for market

participants up to time t, and P is a data-generating measure in continuous time. Let the

continuously compounded return be written as d logS(t) for t ≥ 0, where S(t) is the asset price at

t under P. The log return process d logS(t) is represented by the following stochastic differential

equation (SDE):

d logS(t) = µ(t)dt+ σ(t)dW (t) + Y (t)dJ(t), (1)

where W (t) is an Ft-adapted standard Brownian motion and drift µ(t) and spot volatility σ(t) are

Ft-adapted and bounded processes. This model without its jump component describes diffusive

risk in returns due to normal randomness in markets.

In order to frame the dynamic jump arrivals, which depend on heterogeneous information

flow over time, I set J(t) =
∫ t
0 dJ(s) to be a doubly stochastic Poisson process, that is, a non-

homogeneous Poisson process with an integrated stochastic intensity Λθ(t) =
∫ t
0 dΛθ(s)ds.

5 The

instantaneous intensity process with respect to the filtration up to time t is dΛθ(t) = E(dJ(t)|Ft−).

Its integrated intensity process Λθ(t) is specified by a q-dimensional parameter θ = (θ1, .., θq) ∈ Θ,

which is a subset of the q-dimensional Euclidean space. I can thus write

Λθ(t) =

∫ t

0
dΛθ(s)ds = γ(t,X(t); θ), (2)

where X(t) denotes the conditional information predictors that affect the likelihood of jump

arrivals, and γ is a general function of time and the predictors. The counting process considered

in this paper is assumed to be nonexplosive with finite jump intensity. This assumption excludes

models with infinite-activity jumps.6 The term Y (t)dJ(t) describes more dramatic and unusually

large risk occurring with the aforementioned stochastic intensity. Here, Y (t) represents the jump
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size and has a mean of µy(t) and a standard deviation of σy(t), which can be time-varying. The

jump counting process J(t) and the diffusion W (t) are independent from one another.

I assume a time horizon T and a number of observations n within the horizon. The observation

of asset prices S(t) and informational predictor X(t) occur only at discrete times 0 = t0 < t1 <

... < tn = T . For simplicity, I set observation times for both S(t) and X(t) as equally spaced:

∆t = ti− ti−1 =
T
n . This simplified assumption can be easily generalized to non-equidistant cases

by letting maxi |ti− ti−1| → 0. Assumptions (Assumptions C and D) on the drift and volatility

as well as the intensity function are given in the Appendix for the readers’ convenience. Simply

put, these assumptions allow for stochastic drift and volatility. The integrated jump intensity

function Λθ(t) is only required to be continuous and three times differentiable with respect to

θ. X(t) can include multiple covariates and these covariates should be determined according to

information available at any time up to t.

2 Inference for Stochastic Jump Predictors

In making statistical inferences using discrete data from the jump diffusion model as stated in

equation (1), econometricians face two different unobservability problems. The first is the problem

usually faced when making inferences for a continuous-time counting process (without diffusion)

using discrete observations. The second problem is due to the presence of a diffusion process. The

combination of these two problems renders jumps in continuous time unobservable, and hence they

become latent variables. This particular econometric problem, which I refer to in this paper as

mixed unobservability, complicates the identification of jump predictors, which is the purpose of

this study.

As a solution, I suggest the Jump Predictor Test (JPT). The intuition underlying the JPT
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is simple. Notice that our inference problem requires linking jumps to information arrivals in

continuous-time, and likelihood inference is therefore desirable. Since we do not have continuous

observations to use in optimizing the true likelihood function for the jump intensity model within

jump diffusion processes, one needs to approximate the true likelihood function using discrete

data. If there is no diffusion term in the model, one obvious solution is to approximate the true

likelihood function by a simple time discretization method (referred to later as the full likelihood).

This takes care of the first unobservability problem mentioned above. In the jump diffusion models

I consider in this study, the presence of a diffusion term makes this likelihood function unavailable

for direct application. To resolve this problem, in an initial step, jumps are detected from the

return time series by multiple nonparametric jump detection tests. Using these estimated jumps,

an auxiliary (or pseudo) likelihood is created, which I refer to as the partial likelihood in this

paper. I show that this partial likelihood is equivalent to the full likelihood. Because the full

likelihood approximates the true likelihood in continuous time, the partial likelihood based on

detected jumps can be applied to determine jump predictors in continuous time models. The

limiting distribution of parameter estimates is derived from the likelihood function and can be

used to test whether any information predictor is important or not by the usual significance tests.

Figure 1 illustrates the intuition behind the proposed procedure using a simple example of

seven stochastic jump arrivals. In particular, the figure shows that the test is designed to identify

the information covariates that predict the jump arrivals. Before applying the JPT, these jump

arrivals in continuous time are estimated by jump detection tests using discrete observations from

jump diffusion models. A time-series indicator for these estimated jump arrivals is created and

linked in the intensity model to the time-series data for information covariates. Figure 2 illustrates

how the mixed unobservability is resolved by the proposed method. In paricular, Figure 2 shows
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that the true likelihood function is approximated by the partial likelihood function, which is

the empirical likelihood for actual application. In the approximation, there are three likelihoods

involved, and the lines represent how they are linked to each other in resolving the unobservability

problems. The partial likelihood function (which depends on detected jumps) converges to the

true likelihood function in continuous time (by going through the full likelihood function) as we

increase the frequency of observations.

In the following subsection, the JPT is discussed in more detail, with mathematical definitions

given for the aforementioned three likelihoods, and a user’s guide is provided for selecting good

jump predictors. Since it is often useful to learn the possible error that can be made in any

prediction analysis, the prediction error distribution is also provided.

2.1 Likelihood Inference for the Jump Predictor Test

In this subsection, I explain why one can naively use the “usual” maximum likelihood estimation

and related tests in order to determine jump predictors. As mentioned above, since the stochastic

jumps are modeled by a continuous-time process but the data are sampled only at discrete times,

the likelihood function must be approximated. To illustrate the approximation, I use a notion of

product integration, as follows:

Definition 1. Product Integration

The product integration
∏̃

over [0, T ] of any cadlag (left continuous and right limit) function with

ti ∈ [0, T ] is defined as

∏̃
s∈[0,T ]

(c1 + c2dg(s))
c3+c4dh(s) = lim

∆t→0

∏
1≤i≤n

(c1 + c2dg(ti))
c3+c4dh(ti), (3)
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where c1, c2, c3, and c4 are constants, dg(ti) = g(ti) − g(ti−1), dh(ti) = h(ti) − h(ti−1), and

∆t = |ti+1 − ti|, when t0 = 0 < t1 < t2 < ... < tn = T are discrete times to make a partition of

[0, T ].

This product integration can be understood as a product in continuous time.7 This notation is

used below to define the true likelihood for a continuous-time jump intensity model within jump

diffusion, and the other two approximate likelihood functions involved in the analysis are listed

in the following definitions.

Definition 2. Three Likelihoods

A. True Likelihood

˜L(θ|FT ) =
∏̃

s∈[0,T ]
dΛθ(s)

dJ(s)
∏̃

s∈[0,T ]
(1− dΛθ(s))

1−dJ(s), (4)

where the instantaneous jump intensity dΛθ(t) satisfies equation (2), Λθ(t) =
∫ t
0 dΛθ(s) = γ(t,X(t); θ),

and X(t) is a Ft-predictable process.

B. Full Likelihood

Ln(θ|FT ) =
∏

1≤i≤n

dΛθ(ti)
dJ(ti)

∏
1≤i≤n

(1− dΛθ(ti))
1−dJ(ti), (5)

where dJ(ti) = J(ti)− J(ti−1) and dΛθ(ti) = Λθ(ti)− Λθ(ti−1).

C. Partial Likelihood

PLn(θ|FT ) =
∏

1≤i≤n

dΛ̂θ(ti)
dĴ(ti)

∏
1≤i≤n

(1− dΛ̂θ(ti))
1−dĴ(ti), (6)

where dΛ̂θ(ti) = E[I{L(i)∈Rn(αn)}] and dĴ(ti) = I{L(i)∈Rn(αn)}, with jump detection test statistic

L(i) ≡ logS(ti)/S(ti−1)

σ̂(ti)
√
∆t

, rejection region for the jump detection test Rn(αn), and overall error rate
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αn. The instantaneous volatility estimator σ̂(ti) can be based on bipower variation (Definition

2.C.a) as in

σ̂(ti)
2
≡ 1

(K − 2)c2

i−1∑
j=i−K+2

| logS(tj)/S(tj−1)|| logS(tj−1)/S(tj−2)|,

where K = b∆ta with −1 < a < −1/2 for some constant b, and c = E|u| ≈ 0.7979 with u being

a standard normal random variable. Alternatively, it can be based on truncated power variation

(Definition 2.C.b) as follows. For any g > 0 and 0 < ω̃ < 1/2,

σ̂(ti)
2
≡ ∆t−1

K

i−1∑
j=i−K

(logS(tj)/S(tj−1))
2 I{|logS(tj)/S(tj−1)|≤g∆tω̃},

where K = b∆ta with −1 < a < 0, for some constant b.8

For the continuous-time jump models, we have the well-defined continuous-time (conditional)

likelihood function ˜L(θ|FT ), as in Definition 2.A. The definition of product integration and

the (conditional) likelihood function suggest that we can approximate the likelihood function by

replacing the instantaneous changes by the increments of J(t) and Λθ(t) over ti−1 to ti and forming

the corresponding finite products. Hence, if there is no diffusion term, the actual data analysis

can be done by the full likelihood, as in Definition 2.B. However, because of the diffusion term,

we do not have direct data for the full likelihood function, in which case, we should use the partial

likelihood, as in Definition 2.C. The intuition for this approach is that this partial likelihood

uses the “jumps” that are pre-identified with a suggested jump detection test and treats them

as data for jump intensity model. Currently, there is no theoretical basis in the literature for us

to simply use Definition 2.C for significance tests to determine jump predictors in continuous

time. Below I show that this partial likelihood based on the detected jumps is sufficient as an

objective function to be maximized, and thus, naive likelihood methods are valid.
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In order to apply the partial likelihood, the jump locations must be estimated. These jumps

are required to satisfy certain properties discussed in the following proposition.

Proposition 1. Properties of Estimated Jump Arrivals

Let L(i) be as in Definition 2.C and let Assumption C (see Appendix) be satisfied. Further,

let the rejection region for a chosen test be Rn(αn) = (−∞,−qαnSn − Cn) ∪ (qαnSn + Cn,∞),

where qαn is the (1−αn)th percentile of a standard Gumbel distribution with αn being the overall

error rate, Cn = (2 logn)1/2 − (log π + log(logn))/(2(2 log n)1/2), and Sn = 1/(2 log n)1/2 with n

being the number of observations. Then, as n → ∞ (∆t → 0),

dĴ(ti) = Ĵ(ti)− Ĵ(ti−1) = I{L(i)∈Rn(αn)}
P−→ dJ(ti) = 1,

for any (ti−1, ti] with a jump, and

dĴ(ti) = Ĵ(ti)− Ĵ(ti−1) = I{L(i)∈Rn(αn)}
P−→ dJ(ti) = 0,

for any (ti−1, ti] without a jump.

Notice that the null hypothesis for the jump detection test is the absence of a jump. This

proposition indicates that for every set of discrete-time intervals during which we do (or do not)

have a jump, we do (or do not) detect the jump by conducting the tests. In other words, jump or no

jump arrival in an interval must be determined by the test, and the interval should shrink to zero

as we increase the frequency of observations. Remember that because we have the diffusion term,

the jump indicator over each interval (ti−1, ti) is not directly observable and must be estimated by

a jump detection technique, which depends on several observations in the rolling window of size

K before the time interval. Unless the jump detection test is properly chosen, the probability of
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a jump event calculated with the jump detection test (using discrete data from a jump diffusion

model) may not necessarily be the same as the probability of a jump event over each discrete time

interval. As a first step for likelihood approximation, Proposition 1 ensures that the limiting

support of the two probabilities above is indeed the same asymptotically.9

Threshold qαnSn+Cn for the rejection region Rn(αn) is dominated in the limit (when n → ∞)

by the Cn term. In particular, it is of the order of
√
2 log n. One can achieve this exact order

of
√
2 log n when the overall error rate αn satisfies αn = 1 − exp(− 1√

π logn
), which converges to

zero as n → ∞. Econometricians can arbitrarily require that αn → 0 at a faster rate than this (if

preferred) and can thus marginally decide how conservative they would like the outcome to be.

With the local properties in Proposition 1 satisfied, I show in the following proposition how

the second unobservability problem due to the presence of the diffusion process is resolved as

∆t → 0.

Proposition 2. Asymptotic Equivalence of Partial Likelihood and Full Likelihood

Suppose that Assumptions C and D (see Appendix) hold. Let Ln(θ|FT ) and PLn(θ|FT ) be as

in Definition 2.B and 2.C, with FT being the information filtration up to time T . The estimated

jumps satisfy the properties stated in Proposition 1. Then, as ∆t → 0 and αn → 0,

PLn(θ|FT )

Ln(θ|FT )

P−→ 1, (7)

when there is a finite number of jumps during time horizon [0, T ].

This proposition tells us that the probability that the full likelihood and partial likelihood

are different from each other becomes negligible as we increase the frequency of observations. In

other words, this asymptotic equivalence justifies performing likelihood inference based on de-
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tected jumps as if they were from pure jump models in the absence of a diffusive component.10

However, this proposition does not shed light on the relationship between PLn(θ|FT ) and ˜L(θ|FT ).

Therefore, this result by itself does not guarantee that the outcome from partial likelihood infer-

ence holds in continuous time. We need the following important proposition to resolve the first

unobservability problem. In particular, Proposition 3 connects the partial likelihood, which we

can use for actual analysis, and the true likelihood.

Proposition 3. Partial Likelihood is Sufficient

Suppose that Assumptions C and D (see Appendix) hold. Let ˜L(θ|FT ) and PLn(θ|FT ) be as in

Definition 2.A and 2.C, with FT being the information filtration up to time T . The estimated

jumps satisfies the properties stated in Proposition 1. Then, as ∆t → 0 and αn → 0,

PLn(θ|FT )

˜L(θ|FT )

P−→ 1, (8)

when there is a finite number of jumps during time horizon [0, T ].

Although this simple result with the likelihood ratios may appear subtle, it is in fact a crucial

step in enabling us to provide the asymptotic distributions for jump predictor tests because

now the limiting behavior between the partial likelihood and the true likelihood in continuous

time becomes clear. This likelihood approximation technique has not been used previously for

making inferences on jump predictors for stochastic jump intensity, and it can be applied to other

contexts.11

Once the above convergence is established, the main results of the selection of jump predic-

tors directly follow along with the implication of the prediction error distribution, as stated in

Theorem 1 below.
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Theorem 1. Jump Predictor Test (JPT)

Suppose that Assumptions C and D (see Appendix) hold. Let X(t) = [X1(t), X2(t), .., Xp(t)] be

the vector of the investor’s jump predictor candidates that could affect Λθ(t) and let θ̂ = [θ̂1, ..., θ̂p]

be the maximum likelihood estimate for effect parameter θ based on PLn(θ|FT ), as in Definition

2.C. Then, the following results hold as ∆t → 0.

A. Xk(t) is selected as a jump predictor if Prob
(
z > θ̂k

SE(θ̂k)

)
< β, where β is the chosen sig-

nificance level and z is a standard normal random variable. SE(θ̂k) can be found in the usual

manner from the covariance matrix of Z−1(θ̂), with −Z(θ) being the matrix of second-order par-

tial derivatives of the log-PLn(θ|FT ).
12

B. The investor’s prediction error for jump intensity, dΛ̂θ(t) − dΛθ(t), asymptotically follows

a normal distribution with mean 0 and variance ▽dΛ′
θZ

−1(θ)▽dΛθ, where ▽dΛθ is the partial

derivative of dΛθ(t) with respect to θ.13

My final solution appears similar to the usual MLE methods. However, this work is distin-

guished from others in that I solve the “mixed unobservability” problem described earlier and

I discuss the necessary requirements for the estimated jumps to be used in the analysis. I also

develop a theoretical justification for the naively applied likelihood inference. Finally, the term

“partial likelihood” is also used in the statistics literature for continuous-time counting process

inference using the full likelihood, as in Definition 2.B. The partial likelihood in this paper is

different from the existing approach and is specific to the aforementioned mixed unobservability

problem.
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3 Simulation Study

In this subsection, I examine the finite sample performance of the JPT using a Monte Carlo

simulation. The purpose of this simulation study is to prove whether important jump predictors

can be identified correctly. In summary, the overall results show that the JPT performs well in

distinguishing the effects of jump predictors under general market conditions, including market

interruptions (opening and closing at deterministic times of the day), an asymmetric U-shaped

intraday volatility pattern due to the trading mechanism, leverage effects, jumps in volatility,

and time-varying jump sizes. Although the JPT was developed assuming the absence of some of

these more realistic conditions, this simulation is performed under a realistic setup in order to

demonstrate that the proposed technique provides evidence that is fairly robust to their presence.

For return series generation, I use the Euler-Maruyama Stochastic Differential Equation (SDE)

scheme [see Kloeden and Platen (1992)], which is one of the most widely used methods for sim-

ulating data from continuous-time models. I avoid the starting value effects by discarding five

hundred observations during the burn-in period each time I generate a time series. I generate

15-minute returns over a 1-year horizon from the general model represented as

d logS(t) = u(t)σ(t)dW (t) + Y (t)dJ(t), (9)

where the stochastic volatility model is specified as

dσ2(t) = κ
(
θ − σ2(t)

)
dt+ ωσ(t)dB(t) + Yσ(t)Jσ(t). (10)

The terms W (t) and B(t) denote standard Brownian Motion processes, J(t) and Jσ(t) denote

Poisson processes, and E(dB(t)dW (t)) = ρdt. The parameter values used are the estimates from

the empirical study by Eraker (2004). Specifically, they are κ = 0.0162, θ = 0.573, ω = 0.58, and

ρ = −0.46.
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For the stochastic jump intensity for both price and volatility, I assume dΛθ(t) =
1

1+exp(−θ0−θ1X(t))

with θ0 = −4 and θ1 = 3. This parameterization ensures that the intensity (probability) is within

the admissible range of [0,1]. The predictor X(t) is set to one every week at 10:00am and zero

otherwise in order to mimic real-time news events. The volatility jump size Yσ(t) is set to follow

the exponential distribution with mean µσ = 1.25, and the price jumps size Y (t) is set relative to

σ(t−), the level of stochastic volatility immediately before time t. In other words, jump sizes in

prices are assumed to be time-varying.

The number of trading days per year is 252, with 6.5 trading hours per day, interrupted

overnight, and opening at 9:30am and closing at 4:00pm each day to mimic the New York Stock

Exchange. An asymmetric U-shaped intraday volatility pattern is accommodated in the model

by u(t) specified as in Andersen, Dobrev, and Schaumburg (2008). In particular, u(t) is specified

by the sum of two exponentials with different coefficients to produce the asymmetry, as in

u(t) = c1 + copen exp(−aopen × topen) + cclose exp(−aclose × tclose), (11)

where topen denotes the length of time that has passed since market opening and tclose denotes

the length of time that remains until the market closes on the same trading day. The constant

parameters used are c1 = 0.8892, copen = 0.75, cclose = 0.25, aopen = 10, and aclose = 10, following

the calibrated setup of Andersen, Dobrev, and Schaumburg (2008).

Table 1 reports the simulation results. Every time the return data are generated, the suggested

method is applied and parameter estimates (θ̂0 and θ̂1) are obtained along with their standard

errors (SE(θ̂0) and SE(θ̂1)) and p-values (Prob(z > θ̂i
SE(θ̂i)

) with i = 1, 2) associated with the

estimates. Reported are their averages over three thousand simulation runs. Results based on

both Definition 2.C.a and Definition 2.C.b are provided in the table. As can be seen, the

parameter estimates are on average slightly biased in this type of analysis due to the fact that
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we only use discrete data for this continuous-time model. One way to reduce this bias is to

increase the time horizon. Despite the presence of bias, the results show that the test allows us to

identify the importance of jump predictors fairly precisely with p-values much lower than usual

significance levels such as 1%. This proves that this test is powerful in finite samples.

To save space, I only report results on whether one can correctly identify the jump predictors

using the proposed method. I have also confirmed that the small sample distribution of the

parameter estimates under the null hypothesis is as suggested by the asymptotic theory used

in this paper. The empirical size of the test is close to its theoretical value and there is no

over-rejection problem. Related results are available upon request.

The overall results indicate that the presence of intraday volatility patterns, market closures,

volatility jumps, and time-varying jump sizes will not strongly affect the ultimate conclusion on

the significance of jump predictors. Therefore, the JPT seems to be robust in various market

conditions. The reason for this robust result is that the predicting information is required to be

released often enough before jump arrivals in order to be selected as a significant and important

predictor. This simulation evidence emphasizes the importance of using time-series information

on both jumps and information covariates when identifying the economic determinants of jump

dynamics.14

In the implementation of jump detection techniques such as the tests introduced by Lee

and Mykland (2008) and Lee and Hannig (2010), it is important to use proper window sizes

and truncation levels for volatility estimation. As is often the case with various nonparametric

methods, the jump detection tests are sensitive to these tuning parameters. In theory, window

sizes K for both Definition 2.C.a and Definition 2.C.b must be large enough (but obviously

smaller than the total number of observations) to remove the effect of price jumps in volatility
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estimation. I use the rules used by Lee and Mykland (2008) and Lee and Hannig (2010) in this

simulation and find that the JPT performs well with the optimal window size, that is, the smallest

integer that satisfies condition K = ∆tα
′
with −1 < α′ < −0.5 for detecting jumps.

Furthermore, Definition 2.C.b requires the optimal truncation level as well. In selecting

these parameters, I follow the suggestion made by Aı̈t-Sahalia and Jacod (2009b), who also use

the truncated power variation estimator for their analysis. The parameter values used are ω̃ = 0.47

and g = 4×σ̃. Since the σ̃ is unknown in practice and can be time-varying, it is determined using a

data-dependent method. In this simulation study, I apply a jump robust volatility estimator based

on bipower variation using returns in the upcoming window of size K after each truncation time,

which can be applied in the test with Definition 2.C.b.15 With these properly chosen tuning

parameters, as can be seen in Table 1, the JPT is robust to various realistic market conditions.

The ultimate conclusions drawn from both of the jump detection tests are qualitatively similar.

For the empirical analysis in Section 4, results using Definition 2.C.a are reported.

4 Empirical Analysis for U.S. Individual Equity Jumps

4.1 Data for Equity Jumps

This subsection describes jumps filtered by applying jump detection tests on equity returns. I

select the most actively traded U.S. large-cap component stocks in the Dow Jones Industrial

Average (DJIA) traded on the New York Stock Exchange (NYSE). Data are collected from the

TAQ database, which contains tick-by-tick data for trading information such as transaction time,

price, exchange, and volume information beginning with 1993. My sample extends from January

4, 1993 to December 31, 2008, for a total of 4,017 trading days over 16 years. It is based on

price data from 9:30am to 4:00pm, the normal trading hours on the NYSE. I select transactions
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on the NYSE in order to maintain sufficient degrees of liquidity and a similar organization of

trading mechanisms and trading hours across different stocks. For this reason, two of the 30

stocks are excluded because they are traded on the NASDAQ. I also exclude an additional five

stocks because of a significant incidence of missing data or unusual name changes, either of which

could create significant bias in empirical results.

Table 2 lists the names of the 23 stocks and the S&P 500 index, along with their ticker

symbols.16 This table includes basic descriptive statistics of log returns such as standard deviation,

skewness, kurtosis, and autocorrelations. I use 15-minute stock returns by taking the differences

of log transaction prices. Although a 5-minute frequency has been a popular choice for studying

the volatility of liquid stocks, an even lower frequency is chosen for this jump analysis to ensure

minimal distortion or bias due to noise. Table 2 shows that the sample autocorrelations of returns

are sufficiently small. Furthermore, this sampling frequency is close to 17.5 minutes, the frequency

chosen by Bollerslev, Law, and Tauchen (2009), who utilize volatility signature plots for similar

large-cap companies to determine optimal frequency in their analysis. The simulation study also

confirms that the JPT using this frequency provides satisfactory power. The statistics suggest

that the index and individual stocks have different patterns in return variations. The index has

on average lower mean, lower standard deviation, lower skewness, and higher kurtosis than do

the individual stocks, which means that the variation in index return tends to be driven more by

infrequent extreme negative movements.

Table 2 also includes the descriptive statistics for detected jump counts, that is, the number

of tests undertaken, the number of detected jumps over the sample period, and the average jump

frequencies over a day, a month, and a year. The significance level for the nonparametric jump

detection test is 5%, and I do not exclude the possibility of detecting jumps in overnight returns.
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Results indicate that each year, stocks in the sample experience approximately 21 jumps, from

15 for XOM to 25 for AA, BA, or HPQ. The daily average rate of jump arrival is 8%. This rate

is calculated with the assumption that the jump arrival rate is constant over time. I observe,

however, that jumps do not occur regularly. Therefore, models with constant jump intensities are

not appropriate.

Table 2 also shows that the S&P 500 index has more jumps than an equally weighted index

of the analyzed stocks. It is worth mentioning that unlike evidence in recent studies using high

frequency data, I find a larger number of jumps in the index than in individual stocks.17 The main

reason is the difference in sample periods. For example, Bollerslev, Law, and Tauchen (2009) use

a sample period of January 1, 2001 to December 31, 2005, Lee and Mykland (2008) use a sample

period of September 1, 2005 to November 30, 2005, and Lee and Hannig (2010) use a sample

period of January 1, 2002 to December 2006. In contrast, my sample extends from January 4,

1993 to December 31, 2008. It turns out that the S&P 500 index fund had a greater number

of jumps in years in my sample that are missing from the other studies, namely 1993-1995 and

2007-2008. This result may appear counterintuitive, since we generally expect the index to jump

less than individual stocks due to a diversification effect. However, this is not impossible. First, it

is possible that small co-jumps induced by correlated news escape detection at the individual level

but show up at the aggregate level, as noted by Bollerslev, Law, and Tauchen (2009). Second,

the result is based on the S&P 500 index, which includes many component stocks that are not

analyzed in this study. It is also possible that jumps in other stocks create jumps in this index.

Table 3 presents the times during a day when the jumps arrive. That is, it reports the

percentage of detected jumps during specific time intervals in a trading day among all realized

jumps. I divide the trading hours of the NYSE, 9:30am to 4:00pm, into nine categories. I find
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that more than 86% of individual equity jumps arrive before 11:00am, at approximately the time

of market opening.18 The jumps in the S&P 500 index appear to show a different arrival pattern

within a day. The tendency of index jumps near opening (64% between 9:30am to 11:00am) is

not as high as the tendency for stocks (86%). A significantly higher rate of jumps near market

opening is similar to that of Bollerslev, Law, and Tauchen (2009), who find a significant number

of jumps around 10:00am using a different approach.

Summarizing Tables 2 and 3, I conclude that if jumps occur, they tend to take place in the

morning, while overnight returns do not necessarily include jumps. In fact, there are far fewer

jumps than the number of trading days. The NYSE trading mechanism for opening markets

provides a naturally controlled experiment framework to study whether the market interruption

itself is the cause of jumps in stock prices. Based on my results, I conclude that without infor-

mation that will be reflected in prices, the interruption itself does not trigger jumps. At this

stage, I hypothesize that jumps are triggered when investors’ demand for trading increases due

to information flow in a relatively illiquid market. The jump predictor analysis, to which I now

turn, allows disentangling which information is important enough to trigger jump arrivals.

4.2 Data for Jump Predictors X(t)

This subsection describes the raw data used to create jump predictors. I used a pre-test procedure

to reduce a large number of potential jump predictors to the eight most important predictors. The

procedure is based on how broadly each variable is significant when it is used as a jump predictor

of the individual stocks I consider in this study. To measure the breadth, I use the number of

firms for which each predictor is significant. More detailed descriptions of the pre-test procedure,

alternative information variables, and their data sources are presented in the Appendix.

Table 4 provides details on information variables related to four macroeconomic and four
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firm-specific jump predictors I focus on in this study. It contains the names of the information

variables, their mnemonic abbreviations, the total number of raw data, all dates and times for

each variable, the data source, and the sample period which is matched exactly to the sample

period for the jump data shown in Table 2. The sampling frequency of all information data is set

at 15 minutes to match the sampling frequency of jump data presented in Subsection 4.1.

4.2.1 Macroeconomic Information Variables

The macroeconomic variables I consider in creating jump predictors are U.S. market jumps (MAR-

KET) in the S&P 500 index, Federal Open Market Committee news releases (FOMC), nonfarm

payroll employment report releases (NONFARM), and initial unemployment claims news releases

(JOBLESS). Four different time series of indicators for the arrival times of the information are

used.

For example, the U.S. market jump variable MARKET(t) is a time series of indicators for

the arrival times of jumps in the S&P 500 index. The significance level α applied to detect U.S.

market jumps is 5%, and the total number of detected market jumps during the sample period is

446. FOMC announcements occur every six weeks, and I have 134 observations. Nonfarm payroll

employment information is released monthly, and 191 observations are incorporated. Jobless

claims information is released weekly, and thus there are many more observations for this variable

than for the other variables. Since the NONFARM and JOBLESS numbers are released outside

trading hours at 8:30am in the morning, I set the indicators for NONFARM(t) and JOBLESS(t)

to one at the earliest possible time at which the information can be reflected. In this particular

case, the earliest time is 9:30am. Except for U.S. market jumps, these macroeconomic variables

are released regularly at a pre-scheduled time, as noted in Table 4, for most of the sample period.19
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4.2.2 Firm-specific Information Variable

In the presence of the aforementioned macroeconomic variables, for each firm I consider the fol-

lowing firm-specific variables in creating jump predictors: earnings announcements (EARNINGS),

analyst recommendations (ANALYST), individual stocks’ past jumps (CLUSTER), and dividend

related dates (DIVIDEND). Similar to the macroeconomic variables, for firm c, for example, I

first create a time series of indicators for the arrival times of these information releases and denote

them by EARNINGSc(t), ANALYSTc(t), CLUSTERc(t), and DIVIDENDc(t).

For earnings announcements, I collected release times and dates from the First Call Historical

Database, a subsidiary of Thomson Corporation, which many brokerage firms and institutional

investors depend on to disseminate their research reports electronically to their clients through a

news wire service. To minimize data errors, release dates were compared between the First Call

Historical Database and I/B/E/S database. If the dates from these sources were different, I used

the timing information from a Factiva search. For those earnings that are released after trading

hours, I set the indicator of EARNINGSc(t) for firm c to one at the earliest possible time at

which the information can be reflected. As noted in Table 4, I include all the quarterly earnings

announcements and revisions (if any) by firms over the sample period. The cross-sectional average

number of announcements and revisions is 70 for the 23 firms and the standard error is 10.14.

For analyst recommendations, I collected the comprehensive real-time release history from

the First Call Historical Database. This system provides the dates and time-stamps of analyst

recommendation updates, measured within one minute, which allows us to learn when the in-

formation becomes available to investors and whether it affects jump arrivals. To reduce bias

due to sample selection, I include all types of recommendation changes by all analysts reported

in the database. Note that Womack (1996) examines immediate market reactions to dramatic
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recommendation changes [added to buy (sell) recommendations] made by the highest rated U.S.

brokerage research departments. In contrast, I include not only those dramatic recommendation

changes but also other changes, such as from buy to strong buy. Each recommendation record

from the database contains the ticker symbol of the corresponding firm, the date and time of

the update (up to minutes), and a one-to-five point recommendation scale, with one being most

favorable and five being least favorable. For those analyst recommendations released during non-

trading hours, I again set the indicator of ANALYSTc(t) for firm c to one at the earliest possible

time at which the information can be reflected. As noted in Table 4, the cross-sectional average

number of recommendations is 519 for the 23 firms over the sample period, and the standard error

is 129.85.

I also examine whether past jump arrivals in a specific stock change the likelihood of future

jump arrivals during normal trading hours. In short, I test for evidence of jump clustering, by

which I mean that jump arrivals tend to follow previous jump arrivals. To capture this jump

clustering effects, I use stock jump arrival times in the jump dataset and create a time series of

jump time indicator variables CLUSTERc(t) for firm c. As noted in Table 4, the cross-sectional

average number of jumps is 348 for the 23 firms over the sample period, and the standard error is

45.30. Further details on the jump data used for this CLUSTER variable can be found in Table

2.

For dividend-related dates, I collected data from the CRSP database. Four major dates

related to dividend payments are available: the dividend announcement date, when the board of

directors announces to shareholders and the market that the firm will pay a dividend; the ex-

dividend date, on (or after) which a stock holder can sell the stock and still receive the declared

dividend payments; the date of record, when investors must be listed as holders to ensure the right
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to a dividend payout; and the date of payment, when the firm mails the dividend to the listed

holders. I found the ex-dividend date to be significant for the majority of firms and hence include

it in my analysis. For firm c, I create a time series of DIVIDENDc(t) indicators that are set to be

one on those dates. As noted in Table 4, the cross-sectional average number of dividend related

dates is 190 for the 23 firms over the sample period, and the standard error is 23.79. (Since I set

the information variable DIVIDENDc(s) to be measured every 15 minutes, I use a divisor of 26

(number of 15-minute observations per trading day) in this case to report the average number of

dates.)

4.3 General Jump Prediction

In this subsection, I specify and estimate a model for general jump prediction with the information

predictors X(t) derived from the indicators discussed previously. In particular, I consider the

following logistic parameterization of the instantaneous jump intensity model for firm c:

dΛθ(t) =
1

1 + exp(−θ0 −
∑10

j=1 θjXj(t))
, (12)

where X1(t) = I(9 : 30 ≤ h(t) < 10 : 00) is the time-of-day indicator for times between 9:30am

and 10:00am, with h(t) being the hour:minute of time t,

X2(t) = I(10 : 00 ≤ h(t) < 11 : 00) is the time-of-day indicator for times between 10:00am and

11:00am,

X3(t) = I(
∫ t
t−30minMARKET(s) > 0) is the indicator for MARKET taking a value of one within

the 30 minutes prior to t,

X4(t) = I(
∫ t
t−30min FOMC(s) > 0) is the indicator for FOMC taking a value of one within the 30

minutes prior to t,

X5(t) = I(
∫ t
t−30minNONFARM(s) > 0) is the indicator for NONFARM taking a value of one
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within the 30 minutes prior to t,

X6(t) = I(
∫ t
t−30min JOBLESS(s) > 0) is the indicator for JOBLESS taking a value of one within

the 30 minutes prior to t,

X7(t) = I(
∫ t+1day
t EARNINGSc(s) > 0) is the indicator for EARNINGS for firm c taking a value

of one within one day after t,

X8(t) = I(
∫ t
t−30minANALYSTc(s) > 0) is the indicator for ANALYST for firm c taking a value

of one within the 30 minutes prior to t,

X9(t) = I(
∫ t
t−3hour CLUSTERc(s) > 0) is the indicator for CLUSTER for firm c taking a value of

one within the 3 hours prior to t, and

X10(t) = I(DIVIDENDc(t) × (X1(t) + X2(t)) > 0) is the indicator for morning hours between

9:30am and 11:00am on DIVIDEND dates of firm c.20

Table 5 contains the parameter estimates for all firms listed in Table 2. Coefficients on

controls for intraday seasonal patterns of jump arrivals (in particular, morning hours) appear in

the two left columns after the coefficient for the intercept. I then report coefficients on the four

macroeconomic jump predictors and finally coefficients on the four firm-specific jump predictors

in the subsequent columns. *,**,*** indicate the JPT results, showing that the corresponding

predictors are significant at the 10%, 5%, and 1% levels, respectively. As recognized earlier in

Table 3, the significance of X1(t) and X2(t) on the time of day between 9:30am and 11:00am

confirms that jumps often tend to occur early in the morning.21

The significance of predictors depending on market jump arrivals (X3(t)) provides strong

evidence that overall market jump arrivals increase the likelihood of individual equity jumps

within 30 minutes. This predictor is significant at the 1% level for all firms except for GE,

for which it is significant at the 5% level. Another noteworthy macroeconomic variable is FOMC
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announcements on federal fund rate changes (X4(t)). Results indicate that FOMC announcements

are likely to induce individual equity jump arrivals within 30 minutes. Since this information is

usually released in the afternoon at 2:15pm, this means that the jumps are likely to arrive between

2:15pm and 2:45pm on these announcement dates. Considering the magnitude of the coefficient

on this predictor, this is the most influential predictor of U.S. individual equity jumps among

all those considered. The other two macroeconomic predictors (X5(t) and X6(t)) are indicators

of times shortly after the release of employment and unemployment reports. Given their actual

release times, which is 8:30am for both cases, the results show that jumps are likely to occur

during the first half hour of NYSE trading (9:30am to 10:00am). Except for the case of CVX for

nonfarm payroll reports and the cases of DIS and GE for initial jobless claims, these two jump

predictors are significant mostly at the 1% level.

Among the firm-specific jump predictors, the largest coefficient is found for X7(t), which indi-

cates times within one day before earnings releases, and it is the second most influential predictor

after X4(t), related to FOMC announcements. Earnings announcement information is the only

information that tends to induce jump arrivals before their release time. This exception may occur

because of possible information leakage or because firms sometimes do not release information

at pre-scheduled times. All the other pre-scheduled variables such as FOMC, NONFARM, and

JOBLESS tend to induce jump arrivals within the first 30 minutes after the news releases.

Another important firm-specific jump predictor is X8(t), which indicates times within the 30

minutes after analysts publish their recommendations. As can be seen in Table 5, it is significant at

the 1% level for all firms except for XOM, for which it is significant at the 5% level. Notice that in

this paper, this predictor is created to indicate the first 30 minutes after analysts’ recommendation

releases. Therefore, investors are supposed to observe recommendation releases before jump times,
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making a short-term prediction in real-time. Controlling for all the aforementioned predictors,

I find that the third and fourth most important among the firm-specific predictors are X9(t)

indicating morning hours (from 9:30am to 11:00am) of ex-dividend dates (significant at the 10%

level for 14 out of 23 firms) and X10(t) indicating arrivals of the same stock jumps within the

previous three trading hours (significant at the 5% level for 15 out of 23 firms), which provides

evidence of jump clustering.22

Of most economic interest in this type of study would be the magnitude of the coefficient esti-

mates and their interpretation. Since the instantaneous jump intensity for each firm is estimated

using the time-series logistic regression model (which links jumps to the various information pre-

dictors), one can express the instantaneous odds in favor of jump arrival (relative intensities of

jump and no jump arrival) at time t as follows:

dΛθ(t)

1− dΛθ(t)
= exp

θ0 +

10∑
j=1

θjXj(t)

 . (13)

Because the jump predictors are set up to be the indicators of times around information

releases, taking values of either 0 or 1, one can conclude that the jth jump predictor Xj(t) allows

us to predict an increase of θj units in the log-odds in favor of jump arrival in the corresponding

stock price. Alternatively, but perhaps preferably, one can also conclude that the impact of the

jth information arrivals is to increase the predicted odds of jump arrival in the individual stock

price, multiplicatively by the factor of exp(θj). If there is no information release at time t, and

hence all the jump predictors (Xj(t)’s) are set at 0 at time t, the predicted odds of observing

a jump at that time is then exp(θ0). To give an example, Table 5 shows that the parameter

estimate of θ4 for Home Depot (HD) is 4.01. This means that the predicted odds of jump arrivals

in the Home Depot stock price are generally increased by a factor of exp(4.01) = 55.15 within

30 minutes after FOMC announcements relative to that in other times without the news. If the
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information is released in morning hours, the increase in the predicted odds of jump arrivals is

interpreted relative to the odds during morning hours without the news releases. Other parameter

estimates can be interpreted similarly and represent strong economic significance for the selected

predictors.

It is worth emphasizing here that jumps associated with the ex-dividend dates are most likely

not linked to information shocks but rather are probably due to short-term trading activity on

the ex-day to take advantage of possible arbitrage profits. A sizable amount of the literature

focuses on short-term trading activity on ex-dividend dates and abnormal returns in relation to

differential taxation between dividend and capital gains.23 In a similar vein, I also investigated

whether the magnitude of dividend yield matters for price jumps and whether dividend-related

jump intensities were affected by a significant change in tax policy on dividend and capital gains

taxation since the Jobs and Growth Tax Relief Reconciliation Act (signed in May of 2003) falls

within the sample period of this study. I find no strong evidence to support these hypotheses

using the JPT.

4.4 Separate Predictions for Systematic and Idiosyncratic Jumps

In this subsection, I investigate whether it is possible to distinguish systematic and idiosyncratic

jumps using the JPT. To accomplish this goal, I specifically define systematic jumps to be jumps

detected in the S&P 500 index. Idiosyncratic jumps are defined to be all the detected jumps for

each firm after excluding the systematic jumps as well as cojumps that occurred simultaneously

in at least two firms. These simultaneous jumps are further excluded in order to remove any

industry effect or some other common effect that is unidentified by the S&P 500 index jumps but

is not considered to be entirely idiosyncratic.

Once jumps are classified as mentioned above, the separate intensity models for systematic
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and idiosyncratic jumps are set up as

dΛsystematic
θ (t) =

1

1 + exp(−θ0 −
∑10

j=1 θjXj(t))
, (14)

dΛidiosyncratic
θ (t) =

1

1 + exp(−θ0 −
∑10

j=1 θjXj(t))
, (15)

where the definitions of Xj(t) are described in Subsection 4.3. As in the general jump intensity

model, both models include the terms to control for intraday seasonal patterns of jump arrivals.

The macroeconomic and firm-specific predictors are included for both models. Tables 6 and 7

contain the parameter estimates of the systematic and idiosyncratic jump intensity models for each

firm. *,**,*** indicate the JPT results, showing that the corresponding predictors are significant

at the 10%, 5%, and 1% levels, respectively.

Table 6 shows that distinguishing systematic jumps is possible using the important macroe-

conomic predictors. All the macroeconomic predictors (X3(t), X4(t), X5(t) and X6(t)) are shown

to be strongly significant at the 1% level without exception. X4(t) related to FOMC announce-

ments is proven to be the most influential systematic jump predictor, followed by X5(t) related to

nonfarm payroll employment information. X3(t) and X6(t) related to overall market jumps and

jobless news releases are also shown to be fairly important and precise predictors. The significance

of the predictors indicating times after market jump arrivals (X3(t)) suggests strong evidence of

systematic jump clustering, which means that systematic jumps tend to increase the likelihood

of systematic jumps within a short-time horizon of 30 minutes.

Comparing the average magnitudes of the coefficients for the firm-specific predictors to those

for the macroeconomic predictors, the macroeconomic predictors are much more important for

systematic jump prediction in U.S. stock markets. As expected, the firm-specific predictors are

mostly insignificant in the systematic jump prediction. One exception is X9(t), which is the

predictor indicating three trading hours after individual stock jumps. Individual stock jumps are
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shown to increase the likelihood of systematic jumps within three trading hours (for 19 out of 23

firms at the 5% level). Given that I consider large stocks included in the Dow Jones Industrial

Average Index for this study, it is possible that an extreme shock realized in one large individual

firm may increase uncertainty in the overall market, triggering systematic jumps due to short-term

cross-autocorrelation effects in jump components.

Table 7 reveals that X7(t) related to corporate earnings announcements is the most important

idiosyncratic jump predictor, followed by X8(t) related to analysts’ recommendation releases.

Both predictors are strongly significant at the 1% level for all firms (with one exception of XOM

for X8(t)) and are associated with the two largest coefficients among all predictors considered.

Individual stock jumps and dividend information remain influential for some firms (X9(t) (X10(t))

is significant for 14 (9) out of 23 firms at the 5% level). Comparing the average magnitudes of

the coefficients for the macroeconomic predictors to those for the firm-specific predictors, the

firm-specific predictors are proven to be more useful for idiosyncratic jump prediction in these

individual stock markets.

Results show that for some firms, macroeconomic jump predictors remain important in pre-

dicting their idiosyncratic jumps. Hence, the macroeconomic news releases not only are likely to

trigger jumps in the overall market, but also occasionally induce stock price jumps in the absence

of systematic jumps. This could be because some macroeconomic news may not be broadly in-

fluential enough to trigger jump at the market level, whereas one individual stock could be more

sensitive to the news to experience dramatic changes in prices. This evidence simply demonstrates

the important role of macroeconomic information in extremely volatile stock markets.
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4.5 Jump Size Clustering and Implications

In the analysis of jump dynamics, it is also important to understand how jump sizes changes over

time. Jump size dynamics can be easily investigated by applying the JPT to jumps with different

jump sizes after classifying them according to their size. Using the suggested technique, I show

evidence of jump size clustering in this subsection.

As an initial step, I classify all the detected jumps for each firm into two size groups after

observing its jump size distribution as presented in Table 8. The first group (inner-quartile jump

group) includes jumps whose jump sizes are less than the upper quartile and greater than the

lower quartile of the jump size distribution for the firm. The second group (outer-quartile jump

group) includes jumps whose jump sizes are greater than the upper quartile and less than the

lower quartile of the jump size distribution for the same firm. Then, I create the inner and outer

quartile jump group indicators (CLUSTERgr
c (t)) with gr = inner or outer, for firm c.

The jump intensity model for jump size clustering is specified as

dΛgr
θ (t) =

1

1 + exp(−θ0 −
∑

j θjX
gr
j (t))

, (16)

where Xgr
1 (t) = X1(t) = I(9 : 30 ≤ h(t) < 10 : 00) is the time-of-day indicator for times between

9:30am and 10:00am, with h(t) being hour:minute of the time t,

Xgr
1 (t) = X2(t) = I(10 : 00 ≤ h(t) < 11 : 00) is the time-of-day indicator for times between

10:00am and 11:00am,

Xgr
3 (t) = I(

∫ t
t−3hoursCLUSTER

gr
c (s) > 0) is the indicator for CLUSTERgr

c for firm c’s gr-quartile

jumps, taking a value of one within 3 hours prior to t, and

Xgr
4 (t) = I(

∫ t−3hours
t−10hoursCLUSTER

gr
c (s) > 0) is the indicator for CLUSTERgr

c for firm c’s gr-quartile

jumps, taking a value of one between 3 and 10 trading hours prior to t. As in the previous

application, time-of-day indicators for the morning hours are included to control for the intraday
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seasonal pattern of jump arrivals.

Table 8 reports the characteristics of the detected jump size distribution for all firms listed

in Table 2. The estimation results for inner(outer)-quartile jump clustering are also presented.

As in other tables, *,**,*** indicate the JPT results, showing that the corresponding predictors

are significant at the 10%, 5%, and 1% levels, respectively. It shows that both inner and outer

quartile jumps are likely to cluster separately within a short time horizon of 3 trading hours and

up to 10 trading hours. The results are consistent with the jump clustering evidence presented

in Table 5. Both sized jumps are shown to be short-lived up to 10 trading hours. The outer-

quartile jumps are more likely to cluster over longer trading hours than are inner-quartile jumps.

The impact sizes (measured by the average magnitudes of coefficients) of outer-quartile jumps on

similar jumps in the future tend to be slightly greater than those of inner-quartile jumps.

The evidence found in this study offers explanations for some existing evidence documented

in the literature. For example, it is worth noting that the jump size clustering can influence the

well-known volatility clustering, since traditional volatility measures do not treat returns due to

jump components separately from returns due to diffusion components. Another related study is

on aggregate idiosyncratic variance by Bekaert, Hodrick, and Zhang (2010). The authors study

the idiosyncratic variances estimated using realized variances of the residuals from empirical asset

pricing models as in Campbell, Lettau, Malkiel, and Xu (2001) and Fama and French (1996).

They identify a large number of structural breaks in their idiosyncratic variances and investigate

the dynamics of idiosyncratic variances using regime shifting models. They also document the

importance of macroeconomic uncertainty in explaining time-variation in idiosyncratic variance.

If the idiosyncratic realized variance is estimated by their approach, their estimates essentially

represent total variations from both diffusion and jump components in jump diffusion models
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(including systematic jumps). In other words, variations from jump components are embedded

in their traditional idiosyncratic variance estimates. Therefore, one can interpret that structural

breaks in the idiosyncratic variances are partially due to the presence of jumps in returns. In

particular, if (sizes of) jumps cluster as shown in this paper, their idiosyncratic variance will stay in

a higher-variance regime for a period of time in their two-regime shifting model until it comes back

to a lower-variance regime without jump clustering. Moreover, their finding of macroeconomic

information as important determinants of idiosyncratic variances can be explained, since the

presence of jumps (especially, systematic jumps that are likely to be driven by macroeconomic

predictors and market index jumps) contributes to the time variation in idiosyncratic variance.

5 Concluding Remarks

This article examines the predictability of jumps in individual stock returns. Assuming that stock

prices move continuously, following the jump diffusion models, but that econometricians can only

observe stock price data at discrete times, I first resolve the technical problem of identifying jump

predictors and propose a new empirical test which allows us to discover multiple predictors up to

the intraday level and assess their relative importance and precision. The theoretical result for

statistical inference is very general and can be useful for other empirical studies. As long as high

frequency observations for target returns and jump predictors are available for a sufficiently long

sample period, this technique can be applied to analyzing general jump dynamics as well as any

specific types of jumps in various financial markets.

I show that one can predict general jump arrivals in U.S. individual stock returns using both

macro-level and micro-level information. In particular, macroeconomic information arrivals such

as Fed announcements, nonfarm payroll reports, overall market jumps, and initial jobless claims
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tend to significantly increase the likelihood of individual stock jump arrivals within a short time

horizon such as 30 minutes. I also find strong evidence that stock price jumps tend to occur

within one day before earnings announcement times, within the first 30 minutes after analysts’

recommendation releases, within three trading hours immediately after the same stock experi-

ences jumps, and during the morning hours on ex-dividend dates. I further examine whether one

can distinguish systematic jumps and idiosyncratic jumps using these important predictors. All

the aforementioned macro-level information variables are proven to be very important in system-

atic jump prediction, while earnings and analyst recommendation releases are associated with

better predictors for idiosyncratic jumps than dividend and individual stock jump information.

Overall, the evidence demonstrates an important role of macroeconomic fundamentals in extreme

stock returns, “jumps” with important implications for asset pricing, hedging strategies, portfolio

diversification, and risk management.
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Figure legends

Figure 1: Intuition of Jump Predictor Test

This graph illustrates an example of seven jump arrivals over a given time horizon and shows

how the proposed test identifies the information covariates predicting those jump arrivals. These

arrivals of jumps are not directly observable from discrete data from continuous-time models in

practice. The JPT requires estimating the location of those jump arrival times (from the 1st to

the 7th) by jump detection tests (for example, see Lee and Mykland (2008) or the big jump test

in Lee and Hannig (2010)) as a necessary step. The time-series data for both these estimated

jumps and information covariates are employed for the JPT. The likelihood approximation for

this regression-type analysis is explained in Figure 2. A time-series indicator for jump arrivals is

created and linked to the predictors related to information variables. The multiple candidates for

jump predictors (to become independent variables) should be from the information set available

up to each time jumps arrive and the information set is updated over time. The jump arrival

indicators based on the jump detection tests are required to satisfy the properties listed in Propo-

sition 1. See Section 2 for more details.

Figure 2: How the Mixed Unobservability Problem is Resolved

This graph illustrates how the jump predictors are identified in continuous-time models. Note

that the goal of the inference is to approximate the true likelihood ˜L(θ|FT ) for stochastic jump

intensity models within jump diffusion processes with an empirical likelihood which depends

on available discrete data. I suggest using partial likelihood PLn(θ|FT ), depending on jumps

filtered by multiple jump detection tests and available covariates. The line between partial likeli-

hood PLn(θ|FT ) and full likelihood Ln(θ|FT ) represents their asymptotic equivalence, indicating
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that partial likelihood PLn(θ|FT ) approximates full likelihood Ln(θ|FT ). The line between full

likelihood Ln(θ|FT ) and true likelihood ˜L(θ|FT ) again indicates that full likelihood Ln(θ|FT ) ap-

proximates true likelihood ˜L(θ|FT ), which is the ultimate likelihood that needs to be optimized

in order to identify the jump predictors in continuous-time models. Mathematical definition of

three likelihoods can be found in Definition 2. More details are in Section 2.
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Footnotes

1. See Bakshi, Cao, and Chen (1997), Duffie, Pan, and Singleton (2000), Aı̈t-Sahalia (2002),

Andersen, Benzoni, and Lund (2002), and the references therein.

2. See Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Vega (2003), Wongswan

(2006), and the references therein for the impact of macroeconomic fundamentals on foreign

currency exchange markets, futures markets, treasury (bond) markets, and international stock

markets.

3. Econometricians have explored ways to distinguish jump risk from volatility risk using discrete

observations from continuous-time models. See Aı̈t-Sahalia (2004), Andersen, Bollerslev, and

Dobrev (2007), Huang and Tauchen (2005), Barndorff-Nielsen and Shephard (2006), Jiang and

Oomen (2008), Aı̈t-Sahalia and Jacod (2009b), Lee and Mykland (2008), and the references

therein.

4. See Protter (2004) for the usual technical conditions that this filtration satisfies.

5. This doubly stochastic Poisson process is also known as a Cox process and applied in modeling

corporate default events in recent studies by Duffie, Saita, and Wang (2007) and Das, Duffie,

Kapadia, and Saita (2007), among others.

6. There is some evidence of extremely small jumps (see Aı̈t-Sahalia and Jacod (2009a), and

Todorov and Tauchen (2008), among others). Although it would be interesting to characterize

the dynamics of extremely small jumps, doing so is beyond the scope of this paper.

7. This definition of product integration is created for this study in order to explain the likelihood

approximation. Though a similar concept is used in Andersen, Borgan, Gill, and Keiding (1992)

for counting processes, these authors do not intend to describe it in the presence of the diffusion

term in their model.
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8. For the jump detection test, the null hypothesis is the absence of a jump, and hence, rejecting

the null indicates the presence of a jump. The simulation study in Section 4 is based on these two

estimators, and various parameter choices are suggested for actual applications therein. Term K

in the definition is a window size within which a local movement in the process is considered.

These are used in Lee and Mykland (2008) and Lee and Hannig (2010) for conducting jump

detection tests. For the asymptotic arguments, K needs to satisfy slightly different conditions

depending on the choice of volatility estimator. However, all the conditions are imposed to make

the effect of jumps in volatility estimation negligible. Other candidates for σ̂(ti) are consistent

stochastic volatility estimators such as the multipower variation based estimators, which include

tripower or quadpower variations as special cases. In finite samples, the bipower variation has

finite sample bias due to jumps, and multipower variations share similar finite sample bias. The

simulation study suggests that the marginal benefit of using more orders in power variation is not

significant in the JPT application.

9. The global property of one of the jump detection tests (Definition 2.C.a) was mentioned in

Lee and Mykland (2008), but this local property must be satisfied.

10. This result can essentially be achieved by the application of jump tests that satisfy the

properties stated in Proposition 1, which enables us to separate jumps from the jump diffusion

models. See Lee and Mykland (2008) and Lee and Hannig (2010) for more details on this issue.

11. A similar technique is applied in Mykland and Zhang (2009) for estimating the volatility or

leverage effect, which is the correlation between return and volatility processes in asset prices.

12. The formula for −Z(θ), the matrix of second-order partial derivatives of the log-partial

likelihood function, is

Z(θ) = −
∑

1≤i≤n

∂2

∂θjθl
log dΛ̂θ(ti)dĴ(ti)−

∑
1≤i≤n

∂2

∂θjθl
log(1− dΛ̂θ(ti))(1− dĴ(ti)). (17)
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13. As usual, ▽dΛθ can be estimated by replacing θ with θ̂. θ̂ is asymptotically normal under the

null hypothesis around its mean θ0 with its covariance matrix −Z−1(θ0).

14. It is ideal to adjust individual returns for intra-day volatility patterns when detecting jumps

before applying JPT. However, as also mentioned in Bollerslev, Law, and Tauchen (2009), there

is no obvious solution for this adjustment in most realistic settings because the relative impor-

tance of volatility and jumps changes continuously over time (also across days) and any volatility

measurements which depend on observations at particular times of the days still will not com-

pletely resolve this problem. As stated, this intraday volatility problem does not matter in the

identification of jump predictors by the JPT.

15. Though other jump robust estimators based on multipower variation can be used for the same

purpose, applying estimators based on multipower variation here does not significantly change the

results.

16. I list in the table the symbols used as of December 31, 2008. For the data collection, I first

checked if there were changes in the symbol and confirmed that the observations are from the

same firm before and after the change.

17. This finding on the relative number of jumps in the index and in individual stocks is robust

to the choice of the diffusive volatility estimator, and also holds for the estimator based on mul-

tipower variation.

18. To mitigate the noisy data problem, I removed from the sample all the observations that

might be driven by the bounce-back effect. One could further improve the results by modeling

noise explicitly in the analysis.

19. Before April 1995, FOMC news was not released regularly at the time specified in Table 4.
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I follow Andersen, Bollerslev, Diebold, and Vega (2003) for the irregular release time as in the

table note and regular release times of 11:30am for the years before 1994.

20. As noted in the earlier section, depending on application, other functions for jump intensity

can be applied instead of the simple logistic function.

21. Note that these time-of-day indicators only depend on time, and hence are deterministic.

Therefore, they can be created before time t.

22. In order to make sure that the overall conclusions based on the proposed method is not the

outcome of in-sample overfitting, I check whether the relative importance of the selected pre-

dictors is stable over time. Specifically, I split the total sample period from 1993 to 2008 into

two subsample periods. I estimate the same jump intensity models separately over the two non-

overlapping subsample periods and find that their relative importance stays the same.

23. For example, Michaely (1991) analyzes the effect of the 1986 Tax Reform Act (TRA) on

the ex-dividend day stock price behavior and finds that the tax change had no effect on the ex-

dividend stock price behavior. Also, see Lasfer (1995) and related references therein.
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Figure 1: Intuition of Jump Predictor Test (JPT)
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Figure 2: How the Mixed Unobservability Problem is Resolved
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Table 1: Simulation Results of the Jump Predictor Test (JPT)†

Definition 2.C.a Definition 2.C.b

In the presence of U-shaped intraday volatility and jumps in volatility

σy θ̂0 SE(θ̂0) p-value θ̂0 SE(θ̂0) p-value

4σ(t−) -3.9986 0.0934 0.0000 -4.0202 0.0943 0.0000

8σ(t−) -3.9992 0.0934 0.0000 -4.0211 0.0944 0.0000

12σ(t−) -4.0034 0.0936 0.0000 -4.0250 0.0946 0.0000

σy θ̂1 SE(θ̂1) p-value θ̂1 SE(θ̂1) p-value

4σ(t−) 2.9506 0.3372 4.4562e-006 2.9456 0.3395 5.8270e-006

8σ(t−) 2.9478 0.3373 7.0656e-007 2.9421 0.3397 9.9900e-007

12σ(t−) 2.9510 0.3374 5.9852e-007 2.9434 0.3400 5.1609e-007

† This table contains averaged simulation results from the proposed procedure described in Sec-

tion 2 using the two tests as defined in Definition 2.C.a and 2.C.b. All the figures in this

table are results averaged over 3,000 simulation runs. 15-minute returns over 1 year are gen-

erated from the general model that accommodates the presence of price jumps with stochastic

jump intensity, U-shaped asymmetric intraday volatility, jumps in volatility, time-varying jump

sizes, and leverage effect. It is assumed that market opens at 9:30am and closes at 4:00pm.

The model is specified as d logS(t) = u(t)σ(t)dW (t) + Y (t)dJ(t), and the stochastic volatility

model is specified as dσ2(t) = κ
(
θ − σ2(t)

)
dt + ωσ(t)dB(t) + Yσ(t)Jσ(t), where W (t) and

B(t) denote standard Brownian Motion processes and J(t) and Jσ(t) denote Poisson processes,

E(dB(t)dW (t)) = ρdt. The parameter values used for the simulation are the estimates from the

empirical study by Eraker (2004). They are κ = 0.0162, θ = 0.573, and ω = 0.58, ρ = −0.46.

For the jump intensity model, I assume that dΛθ(t) =
1

1+exp(−θ0−θ1X1(t))
with θ0 = −4 and

θ1 = 3. Here, the predictor X1(t) is set to become 1 every week at 10:00am to mimic real-time

news events. Sizes for jumps in volatility Yσ(t) follow the exponential distribution with its

mean µv = 1.25 and time-varying sizes for jumps in prices Y (t) are set in comparison to σ(t−)

volatility level immediately before time t. u(t) for the asymmetric U-shaped intra-day volatil-

ity pattern is modeled as in Andersen, Dobrev, and Schaumburg (2008) and their calibrated

parameter setup. See further details in Section 3.
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Table 3: At What Times do Jumps Occur more often?†

Ticker 9:30am 9:45am 10:00am 10:15am 11:00am 12:00pm 1:00pm 2:00pm 3:00pm

SPY 0.6300 0.0157 0.0314 0.0650 0.0269 0.0336 0.0291 0.0605 0.0561

AA 0.5917 0.1320 0.0636 0.0685 0.0318 0.0318 0.0098 0.0244 0.0269

AXP 0.6065 0.1272 0.0207 0.0621 0.0237 0.0089 0.0325 0.0355 0.0533

BA 0.5892 0.1516 0.0636 0.0733 0.0244 0.0147 0.0244 0.0196 0.0269

CAT 0.6087 0.1535 0.0716 0.0486 0.0179 0.0230 0.0153 0.0205 0.0256

CVX 0.6021 0.1725 0.0387 0.0387 0.0070 0.0106 0.0141 0.0317 0.0599

DD 0.6198 0.1725 0.0575 0.0511 0.0256 0.0096 0.0096 0.0160 0.0288

DIS 0.6576 0.1603 0.0462 0.0408 0.0136 0.0054 0.0190 0.0109 0.0190

GE 0.6632 0.0687 0.0241 0.0790 0.0412 0.0069 0.0206 0.0172 0.0378

HD 0.6224 0.1607 0.0408 0.0536 0.0230 0.0128 0.0204 0.0357 0.0128

HPQ 0.6399 0.1582 0.0535 0.0389 0.0268 0.0122 0.0195 0.0195 0.0219

IBM 0.6501 0.1405 0.0386 0.0523 0.0220 0.0165 0.0138 0.0193 0.0138

JNJ 0.6341 0.1229 0.0447 0.0531 0.0168 0.0112 0.0223 0.0223 0.0475

JPM 0.6272 0.1069 0.0405 0.0578 0.0434 0.0145 0.0173 0.0289 0.0434

KO 0.7544 0.1103 0.0320 0.0285 0.0142 0.0142 0.0142 0.0071 0.0214

MCD 0.6070 0.1551 0.0294 0.0428 0.0348 0.0187 0.0241 0.0348 0.0374

MMM 0.5156 0.1656 0.0906 0.0469 0.0375 0.0219 0.0156 0.0125 0.0656

MRK 0.5851 0.1598 0.0387 0.0490 0.0258 0.0155 0.0103 0.0232 0.0670

PFE 0.6176 0.1628 0.0413 0.0413 0.0439 0.0207 0.0181 0.0155 0.0310

PG 0.6594 0.1377 0.0290 0.0906 0.0000 0.0181 0.0036 0.0145 0.0326

T 0.6280 0.1297 0.0444 0.0410 0.0205 0.0239 0.0171 0.0239 0.0478

UTX 0.5233 0.1699 0.0548 0.0877 0.0521 0.0219 0.0219 0.0137 0.0384

WMT 0.6243 0.1469 0.0367 0.0508 0.0169 0.0226 0.0226 0.0169 0.0508

XOM 0.6877 0.0830 0.0356 0.0593 0.0158 0.0158 0.0158 0.0316 0.0356

AVE 0.6224 0.1412 0.0451 0.0546 0.0252 0.0161 0.0175 0.0215 0.0367

† The table reports the percentages of jumps in individual equities and the S&P 500 index detected at specific time intervals

in a trading day among all detected jumps during the sample period from January 4, 1993 to December 31, 2008 for a total

of 4,017 trading days. The NYSE trading hours (9:30am to 4:00pm) are divided into 9 time intervals. Column names are the

starting points of the time intervals. For example, the first column (9:30am) includes the percentages of jumps that occurred

during the time interval starting at 9:30am and ending at 9:45am.
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Appendix

A.1. Assumption C on µ(t) and σ(t) in equation (1)

It is assumed that the drift and diffusion coefficients do not change dramatically over a short

time interval, allowing them to depend on the process itself. It satisfies most of continuous-time

models in the asset pricing literature. See Lee and Mykland (2008) for more detailed mathematical

assumptions on the µ(t) and σ(t) coefficients.

A.2. Assumption D on Λθ(t) in equation (2)

Here, a note is made on the minimal assumption imposed on X(t). X(t) is required to be a

Ft-predictable process. In other words, each of X(t)’s components is supposed to be determined

according to information observable at any time up to t. X(t) can be deterministic variables such

as time (time of the day or day of the week), exogenous information variables available before

t, jump indicators observed at any time up to t, waiting time since the last jump time, jump

indicators from other markets observed at any time up to t, or other state variables forecasted

using a conditional expectation based on dynamic (time-series) models. For the formation of

the expectation, there is no restriction on the type of static or dynamic model specification or

estimation procedures. The integrated intensity function Λθ(t) is only required to be continuous

and differentiable so that the Martingale central limit theorem can hold and the solution for the

corresponding score function exists and is consistent.

The following assumptions are imposed on Λθ(t), which is a modified version of Condition

VI.1.1. in Andersen, Borgan, Gill, and Keiding (1992). Denote by θ0 the true value of parameter

and θ the free parameter. Let T be a given terminal time, 0 < T ≤ ∞, and n be the number of

observations within terminal time T .
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D.1. There exists a neighborhood Θ0 of θ0 such that for all n and θ ∈ Θ0, log dΛθ(t) and dΛθ(t)

are three times differentiable with respect to θ ∈ Θ0.

D.2. There exist finite functions σjl(θ) defined on Θ0 such that for all j, l,

1

n

∫ T

0
{ ∂

∂θj
log dΛθ0(t)}{

∂

∂θl
log dΛθ0(t)}dΛθ0(t)dt

p−→ σjl(θ0),

as n → ∞. Moreover, the matrix Σ = {σjl(θ0)} is positive definite.

D.3. For all j and ϵ > 0, we have

1

n

∫ T

0
{ ∂

∂θj
log dΛθ0(s)}2I

(
| 1√

n

∂

∂θj
log dΛθ0(s)| > ϵ

)
dΛθ0(s)ds

p−→ 0,

as n → ∞.

D.4. For any n, there exist Gn and Hn such that

sup
θ∈Θ0

| ∂3

∂θj∂θl∂θm
dΛθ(t)| ≤ Gn(t)

and

sup
θ∈Θ0

| ∂3

∂θj∂θl∂θm
log dΛθ(t)| ≤ Hn(t)

for all j, l,m. Further,

1

n

∫ T

0
Gn(t)dt,

1

n

∫ T

0
Hn(t)dΛθ0(t)dt,

1

n

∫ T

0
{ ∂2

∂θj∂θl
log dΛθ0(t)}2dΛθ0(t)dt

all converge in probability to finite quantities as n → ∞, and for all ϵ > 0,

1

n

∫ T

0
Hn(t)I

(√
Hn(t)

n
> ϵ

)
dΛθ0(t)dt

p−→ 0.

A.3. Proof of Proposition 1

With the rejection region Rn(αn) = (−∞,−qαnSn − Cn, qαnSn + Cn,∞), if dJ(ti) = 0 for each

single interval (ti−1, ti],

P (dĴ(ti) = 0 = dJ(ti)) = 1− P (L(i) ∈ Rn(αn))
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= 1− 2(1− Φ(qαnSn + Cn)) ≈ 1− 2(1− Φ(
√
2 log n)) ∼ 1− 1√

πn
√
log n

→ 1, (18)

as n → ∞, i.e., ∆t → 0. Φ(x) is the standard normal cumulative distribution function. The last

approximation is due to the asymptotic expression for 1−Φ(x) as x → ∞, which is limx→∞ x(1−

Φ(x))ex
2/2 = (2π)−1/2. See Galambos (1978) for its derivation.

If dJ(ti) = 1 for an interval with its jump time τ ∈ (ti−1, ti],

P (dĴ(ti) = 1 = dJ(ti)) = P (L(i) ∈ Rn(αn)) ≈ P (|Y (τ)| > (qαnSn + Cn)σ(τ)
√
∆t)

≈ 1− F|Y |

(
σ(τ)

√
−2∆t log(∆t)

)
∼ 1− 2√

2π
σ(τ)

√
−2∆t log(∆t) → 1, (19)

as ∆t → 0, and hence σ(τ)
√

−2∆t log(∆t) → 0. F|Y |(y) is the distribution function of absolute

jump sizes |Y | and σ(τ) denotes the local volatility level at jump time τ .

A.4. Proof of Proposition 2

I decompose the full likelihood function into two different mutually exclusive parts for actual jump

times and non-jump times, as follows:

Ln(θ|FT ) =
∏

1≤i≤n,dJ(ti)=1

dΛθ(ti)
dJ(ti)

︸ ︷︷ ︸
(20.1)

∏
1≤i≤n,dJ(ti)=1

(1− dΛθ(ti))
1−dJ(ti)

︸ ︷︷ ︸
(20.2)

×
∏

1≤i≤n,dJ(ti)=0

dΛθ(ti)
dJ(ti)

︸ ︷︷ ︸
(20.3)

∏
1≤i≤n,dJ(ti)=0

(1− dΛθ(ti))
1−dJ(ti)

︸ ︷︷ ︸
(20.4)

, (20)

where Λθ(t) = γ(t,X(t); θ).

The second (20.2) and third (20.3) products are one under the full observations from the jump

models without diffusion term. Hence, it is enough to show that both of these two products (20.2)

and (20.3), based on results by the jump detection tests, become one, with probability one, as
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∆t → 0, so that the other two products based on the results by the jump detection tests match

the corresponding ones, (20.1) and (20.4).

For term (20.2), let H be the finite number of jumps during the time horizon and τh be the

jump times in [0, T ] with h = 1, ...,H. Then, from Proposition 1, as ∆t → 0,

P

 ∏
1≤i≤n,dJ(ti)=1

(
1− dΛ̂θ(ti)

)1−dĴ(ti)
= 1|H

 = P
(
for all i s.t. dJ(ti) = 1, dĴ(ti) = 1|H

)

≈
∏

1≤h≤H

[
1− F|Y |

(
σ(τh)

√
−2∆t log(∆t)

)]
∼ 1− 2√

2π

H∑
h=1

σ(τh)
√

−2∆t log(∆t) → 1, (21)

where F|Y |(y) is the distribution function of absolute jump sizes |Y | and σ(τh) denotes the local

(bounded) volatility level at the hth jump time. Notice here that only the finite activity jumps

are allowed with finite number H of jumps to obtain this result.

For the term (20.3),

P

 ∏
1≤i≤n,dJ(ti)=0

dΛ̂θ(ti)
dĴ(ti) = 1|H

 = P
(
for all i s.t. dJ(ti) = 0, dĴ(ti) = 0|H

)

∼ P

(
max

1≤i≤n,dJ(i)=0
|L(i)| ∈ R(αn)

c

)
= G(qαn) = 1− αn → 1, (22)

as qαn → ∞ and αn → 0, with the distribution function of a standard Gumbel variable G(qαn).

Therefore, the result holds, because

P

(
PLn(θ|FT )

Ln(θ|FT )
= 1|H

)

= P

 ∏
1≤i≤n,dJ(ti)=1

(
1− dΛ̂θ(ti)

)1−dĴ(ti)
= 1|H

× P

 ∏
1≤i≤n,dJ(ti)=0

dΛ̂θ(ti)
dĴ(ti) = 1|H


∼

(
1− 2√

2π

H∑
h=1

σ(τh)
√

−2∆t log(∆t)

)
× (1− αn) → 1, (23)

as ∆t → 0 and αn → 0. Note that this pointwise convergence in probability combined with the

results of Newey (1991) imply uniform convergence in probability in a compact subset of Θ due

to Condition D.
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A.5. Proof of Proposition 3

By the definition of product integration,

Ln(θ|FT )

˜L(θ|FT )

a.s.−→ 1, which implies
Ln(θ|FT )

˜L(θ|FT )

P−→ 1. (24)

Thus, due to Proposition 2,

PLn(θ|FT )

˜L(θ|FT )
=

PLn(θ|FT )

Ln(θ|FT )
× Ln(θ|FT )

˜L(θ|FT )

P−→ 1. (25)

A.6. Proof of Theorem 1

GivenAssumption C, we know that as ∆t → 0, for any θ, log(Ln(θ|FT ))−log(PLn(θ|FT ))
P−→ 0,

which also implies uniform convergence in probability from Proposition 2. Here, let UL(θ) and

UPL(θ) be the score functions based on log(Ln(θ|FT )) and log(PLn(θ|FT )). Then, the two esti-

mators θ̂L,n and θ̂PL,n such that UL(θ̂L,n) = 0 and UPL(θ̂PL,n) = 0 are asymptotically equivalent.

In other words, as ∆t → 0 (as n → 0), θ̂L,n − θ̂PL,n → 0 in probability: this is proved by

contradiction. Now, according to the Slutsky Theorem as in Ferguson (1996), it is enough to

show that the estimator based on Ln(θ|FT ), θ̂L,n, is consistent and converges in law to a normal

distribution around its mean θ0. For this part, I apply a modified version of proofs for Theorem

VI.1.1. and VI.1.2 in Andersen, Borgan, Gill, and Keiding (1992). Due to a Taylor expansion,

1− dΛθ(t) = exp(−dΛθ(t)), UL(θ) can be written as

UL(θ) =

∫ .

0

∂

∂θ
log dΛθ(s)dM(s),

where M(t) = J(t) −
∫ t
0 dΛθ(s)ds and is a local square integrable martingale. Here, Lenglart’s

inequality is first applied to establish the existence of a consistent estimator that is the solution for

the score function. Next, the Martingale central limit theorem is used to establish the convergence
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of estimators in distribution to normal. Finally, it is obvious that the last result can be obtained

by the delta method.

An alternative to the proof given above is to consider two equivalent probability measures P

and PPLn . P is the true (latent) data-generating measure for ˜L(θ|FT ) in continuous time, as in

Definition 2.A and PPLn is the observable data-generating measure for PLn(θ|FT ) in discrete time,

as in Definition 2.C. Instead of going through Ln(θ|FT ), the above weak convergence proof can

be directly applied on UPL(θ) because of the convergence of PPLn to P, as shown in Proposition

3.

A.7. Equity Price Data Cleaning Procedure

To avoid unnecessary data recording errors, I also preprocess the raw data as follows. All stocks

selected are assured to pass the active trade filter (50 trades per day), which is usual for high

frequency data analysis. For transactions that happen at the same time, I take the first transaction

price recorded in the database. I exclude obvious outliers and all recording errors such as zero

prices. High frequency data may contain bounce-back type data errors caused by extreme round

trips of recorded prices to unreasonably different price levels. If returns from a stock are followed

by returns with opposite signs and similar magnitudes and if the magnitudes of any jumps in the

stock are significantly different from those without the bounce-back effect, I exclude those returns

from consideration.

A.8. Pre-search Procedure for Jump Predictors

I describe a pre-test procedure I employed to determine the most important jump predictors listed

in Table 4. Since the JPT is applied to link the one dimensional time series indicator of jumps

detected from one stock to multiple jump predictors, I initiate my estimation for each firm using
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all the eight predictors described in Section 4 as well as various alternative predictors. Table

A.1 lists all the alternative information variables (along with their data source) I consider for

creating predictors but reject due to their relative lack of significance. These news information

variables are selected to capture real-time information releases regarding the real activity of the

overall economy, inflation, and monetary policy as well as firm-specific fundamental information.

The sample periods for all variables are matched exactly with the sample period for jump data

in Table 2, which is from January 4, 1993 to December 31, 2008.

For each variable, I create the predictors based on a time-series indicator of the information

release times (unless defined otherwise). These predictors are designed to test the impact of

information on stock price jumps over the time horizon, such as 15 minutes, 30 minutes, 60

minutes, 90 minutes, 120 minutes, and 180 minutes, etc., around the information releases. In

addition to these predictors, the terms controlling for the intraday seasonality of jump arrivals

are added in this pre-search.

The jump predictor is selected if it is proven to be broadly significant. In order to measure

the breadth of significance, I obtain the parameter estimates and p-values associated with all

the predictors for each firm. Then, for each predictor, I count the number of firms for which

the predictor is significant at the 5% level. Finally, all the predictors are ranked according to

these number of firms, and the eight predictors are selected according to this ranking. To give

an example using Table 5, X1(t), X2(t), X3(t), X4(t), X7(t) and X8(t) are significant for 23 out

of 23 firms and they are ranked first to be included in the model. Then, X5(t) and X6(t) are

selected as they are significant for 21 firms in the sample. The last two are included subsequently.

Some predictors related to the alternative variables listed in Table A.1 are found to be significant,

but they are not ranked highly enough by the aforementioned measure. They are not as broadly

61



significant as the predictors related to variables listed in Table 4, and hence omitted in the model.

The time-of-day variables for times beyond 11:00am and up to 4:00pm are also found to be

insignificant, and hence omitted in the model.
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