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Jumps and Information Flow in Financial Markets

Abstract

This paper investigates the predictability of jump arrivals in U.S. stock markets.
Using a new test that identifies jump predictors up to the intraday level, I find that
jumps are likely to occur shortly after macroeconomic information releases such as
Fed announcements, nonfarm payroll reports, and jobless claims as well as market
index jumps. I also find firm-specific jump predictors related to earnings releases,
analyst recommendations, past stock jumps, and dividend dates. Evidence suggests
that distinguishing systematic jumps from idiosyncratic jumps is possible using the

characteristics of jump predictors. Finally, I present a short-term jump size clustering.
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Much recent research in finance has found empirical evidence of jumps in equity returns. Their
presence has been successfully used to better explain various market phenomena.! Nevertheless,
the role of real-time information for predicting jumps in stock markets has not been thoroughly
investigated in the literature. In this article, I analyze the predictability of jumps in individ-
ual stock returns, using both macroeconomic and firm-specific news releases and I present how
the information is reflected in stock prices as jumps.? This analysis naturally allows a novel
decomposition of individual stock jumps into systematic and idiosyncratic jumps.

To accomplish this goal, I identify important jump predictors and assess their relative impor-
tance and precision for the purpose of developing stochastic jump intensity models. Assuming
that an individual equity price follows a jump diffusion process with stochastic jump intensity,
I must resolve the econometric problem of identifying jump predictors using discrete data from
continuous-time models. I refer to this as the mixed unobservability problem. It arises from the
simultaneous presence of two unobservability problems. The first is caused by the difficulty we
usually face when making an inference for a continuous-time jump counting process (without dif-
fusion) using discrete observations. The second problem results from the presence of the diffusion
process. The mixture of these two makes jumps in jump diffusion models unobservable; thus, the
identification of jump predictors becomes difficult.

As a resolution, I propose an inference technique called the Jump Predictor Test (JPT). It
allows us to estimate a regression-type jump intensity model and apply standard hypothesis tests
in order to identify significant jump predictors. In this way, we can predict ex ante whether jumps
are likely to occur, what kind of jumps are more likely to occur, and when they are more likely to
occur, given the available information. The idea underlying this JPT is simple. I first detect the

location of jumps from the return series by multiple nonparametric jump detection tests.® This



is a necessary step before applying the JPT. Then, I suggest a likelihood inference for the JPT
using time-series data for both jumps and information covariates. I prove that this technique
asymptotically makes the effect of the mixed unobservability problem negligible, allowing good
jump predictors to be identified. I discuss a theory of likelihood inference justifying this approach
and provide a guide for tests and general applications.

Using the JPT, an empirical study is performed to refine our understanding of how jumps in
U.S. individual stock returns respond to market information releases. Using high frequency data
from January 4, 1993 to December 31, 2008 for Dow Jones Industrial Average component stocks, 1
demonstrate that jumps are predictable to some extent. I link stochastic jump arrivals to the most
important predictors related to four macroeconomic and four firm-specific information variables:
U.S. Federal Open Market Committee (FOMC) decisions, overall market jumps detected in the
S&P 500 market index, U.S. nonfarm payroll employment reports, initial unemployment claims,
earnings releases, analyst recommendations, dividend dates, and past jump arrivals for each firm.

Jumps are likely to occur within a short time horizon such as 30 minutes following macroe-
conomic information releases. The indicator for the 30 minutes following FOMC announcements
turns out to be the most influential predictor of U.S. individual stock jumps, followed by overall
market jumps. Macroeconomic predictors tend to play a more important role in pinning down
intraday jump dynamics for individual stocks than do firm-specific predictors, evidence which has
not been clearly uncovered in the literature. The JPT enables us to uniquely capture an unusual
impact of real-time information on price jumps up to the intraday level, which is difficult to show
with conventional methodologies.

I also find that firm-specific predictors perform differently from macroeconomic predictors.

The firm-specific predictors are indicators for time horizons within one day before earnings re-



leases, within the first 30 minutes following analyst recommendations, within three hours of the
arrival of previous jumps in the same stock, and within the morning hours of ex-dividend dates.
The jump probability being higher within one day before earnings releases suggests the possibility
of information leakage before the pre-scheduled announcements.

I further investigate the role of information characteristics in distinguishing systematic jumps
from idiosyncratic jumps. This distinction between systematic jumps and idiosyncratic jumps
is expected to be beneficial in portfolio or risk management, with better understanding of the
determinants of non-diversifiable risk in highly volatile markets. After classifying systematic and
idiosyncratic jumps, I separately estimate the systematic and idiosyncratic jump intensity models
for each firm, where all the aforementioned predictors are used. I find that all the macroeconomic
information predictors remain strongly significant for systematic jumps, emphasizing their impor-
tant role in systematic jump prediction. Idiosyncratic jumps are strongly induced by earnings and
analysts’ recommendation releases. In general, idiosyncratic jump prediction is less precise than
systematic jump prediction using the available information. Finally, I use the JPT methodology
to investigate jump size dynamics, showing that they tend to cluster by size. This simple appli-
cation demonstrates the possibility of the JPT being applied to other studies on jump modeling
using various types of jumps in other markets.

The remainder of the paper is organized as follows. Section 1 sets up the general theoretical
framework. Section 2 explains the inference theory for the JPT. Section 3 reports the JPT’s
finite sample performance. Readers who are interested mainly in application of the JPT may

turn directly to Section 4, which presents the empirical evidence. Section 5 concludes.



1 Theoretical Model

I employ a one-dimensional asset return process with a complete probability space (€2, F;, P),
where © is the set of market events, {F; : t € [0,7]} is an information filtration* for market
participants up to time ¢, and P is a data-generating measure in continuous time. Let the
continuously compounded return be written as dlog S(t) for t > 0, where S(t) is the asset price at
t under P. The log return process dlog S(t) is represented by the following stochastic differential
equation (SDE):

dlog S(t) = p(t)dt + o(t)dW (t) + Y (t)dJ(t), (1)
where W (t) is an F-adapted standard Brownian motion and drift x(t) and spot volatility o(t) are
Fi-adapted and bounded processes. This model without its jump component describes diffusive
risk in returns due to normal randomness in markets.

In order to frame the dynamic jump arrivals, which depend on heterogeneous information
flow over time, I set J(t) = fg dJ(s) to be a doubly stochastic Poisson process, that is, a non-
homogeneous Poisson process with an integrated stochastic intensity Ag(t) = fot dAg(s)ds.> The
instantaneous intensity process with respect to the filtration up to time ¢ is dAg(t) = E(dJ(t)|Fi—).
Its integrated intensity process Ag(t) is specified by a g-dimensional parameter § = (61, ..,6,) € ©,

which is a subset of the ¢g-dimensional Euclidean space. I can thus write

Mot = [ dhats)ds = (6. X(01:0), @)
where X (t) denotes the conditional information predictors that affect the likelihood of jump
arrivals, and ~y is a general function of time and the predictors. The counting process considered
in this paper is assumed to be nonexplosive with finite jump intensity. This assumption excludes
models with infinite-activity jumps.® The term Y (¢)d.J(t) describes more dramatic and unusually

large risk occurring with the aforementioned stochastic intensity. Here, Y (¢) represents the jump



size and has a mean of 1, (t) and a standard deviation of o,(t), which can be time-varying. The
jump counting process J(t) and the diffusion W (t) are independent from one another.

[ assume a time horizon T and a number of observations n within the horizon. The observation
of asset prices S(t) and informational predictor X (¢) occur only at discrete times 0 = ¢y < t1 <
... <ty =T. For simplicity, I set observation times for both S(t) and X (¢) as equally spaced:
At =t;—t;_1 = % This simplified assumption can be easily generalized to non-equidistant cases
by letting max; |t; —t;—1| — 0. Assumptions (Assumptions C and D) on the drift and volatility
as well as the intensity function are given in the Appendix for the readers’ convenience. Simply
put, these assumptions allow for stochastic drift and volatility. The integrated jump intensity
function Ay(t) is only required to be continuous and three times differentiable with respect to

6. X(t) can include multiple covariates and these covariates should be determined according to

information available at any time up to ¢.

2 Inference for Stochastic Jump Predictors

In making statistical inferences using discrete data from the jump diffusion model as stated in
equation (1), econometricians face two different unobservability problems. The first is the problem
usually faced when making inferences for a continuous-time counting process (without diffusion)
using discrete observations. The second problem is due to the presence of a diffusion process. The
combination of these two problems renders jumps in continuous time unobservable, and hence they
become latent variables. This particular econometric problem, which I refer to in this paper as
mized unobservability, complicates the identification of jump predictors, which is the purpose of
this study.

As a solution, I suggest the Jump Predictor Test (JPT). The intuition underlying the JPT



is simple. Notice that our inference problem requires linking jumps to information arrivals in
continuous-time, and likelihood inference is therefore desirable. Since we do not have continuous
observations to use in optimizing the true likelihood function for the jump intensity model within
jump diffusion processes, one needs to approximate the true likelihood function using discrete
data. If there is no diffusion term in the model, one obvious solution is to approximate the true
likelihood function by a simple time discretization method (referred to later as the full likelihood).
This takes care of the first unobservability problem mentioned above. In the jump diffusion models
I consider in this study, the presence of a diffusion term makes this likelihood function unavailable
for direct application. To resolve this problem, in an initial step, jumps are detected from the
return time series by multiple nonparametric jump detection tests. Using these estimated jumps,
an auxiliary (or pseudo) likelihood is created, which I refer to as the partial likelihood in this
paper. I show that this partial likelihood is equivalent to the full likelihood. Because the full
likelihood approximates the true likelihood in continuous time, the partial likelihood based on
detected jumps can be applied to determine jump predictors in continuous time models. The
limiting distribution of parameter estimates is derived from the likelihood function and can be
used to test whether any information predictor is important or not by the usual significance tests.

Figure 1 illustrates the intuition behind the proposed procedure using a simple example of
seven stochastic jump arrivals. In particular, the figure shows that the test is designed to identify
the information covariates that predict the jump arrivals. Before applying the JPT, these jump
arrivals in continuous time are estimated by jump detection tests using discrete observations from
jump diffusion models. A time-series indicator for these estimated jump arrivals is created and
linked in the intensity model to the time-series data for information covariates. Figure 2 illustrates

how the mixed unobservability is resolved by the proposed method. In paricular, Figure 2 shows



that the true likelihood function is approximated by the partial likelihood function, which is
the empirical likelihood for actual application. In the approximation, there are three likelihoods
involved, and the lines represent how they are linked to each other in resolving the unobservability
problems. The partial likelihood function (which depends on detected jumps) converges to the
true likelihood function in continuous time (by going through the full likelihood function) as we
increase the frequency of observations.

In the following subsection, the JPT is discussed in more detail, with mathematical definitions
given for the aforementioned three likelihoods, and a user’s guide is provided for selecting good
jump predictors. Since it is often useful to learn the possible error that can be made in any

prediction analysis, the prediction error distribution is also provided.

2.1 Likelihood Inference for the Jump Predictor Test

In this subsection, I explain why one can naively use the “usual” maximum likelihood estimation
and related tests in order to determine jump predictors. As mentioned above, since the stochastic
jumps are modeled by a continuous-time process but the data are sampled only at discrete times,
the likelihood function must be approximated. To illustrate the approximation, I use a notion of

product integration, as follows:

Definition 1. Product Integration
The product integration ﬁ over [0,T] of any cadlag (left continuous and right limit) function with

ti € [0,T] is defined as

H cl0.1] (c1 + ngg(S))CSJrC“dh(s) = lim (c1 + czdg(ti))c3+c4dh(ti)’ (3)



where c1, ¢z, c3, and ¢4 are constants, dg(t;) = g(t;) — g(ti—1), dh(t;) = h(t;) — h(ti—1), and
At = |tiy1 — ti], when tg =0 < t1 < ta < ... < tp, =T are discrete times to make a partition of

[0, 7.

This product integration can be understood as a product in continuous time.” This notation is
used below to define the true likelihood for a continuous-time jump intensity model within jump
diffusion, and the other two approximate likelihood functions involved in the analysis are listed

in the following definitions.

Definition 2. Three Likelihoods

A. True Likelihood

— dJ(s) _ 1-dJ(s)
LOFr) = ]I, 7y @20 )™ T gy (1 — da(s) =1, (4)

where the instantaneous jump intensity dAg(t) satisfies equation (2), Ag(t) fo dAg(s) =~(t, X(t);0),
and X (t) is a Fy-predictable process.

B. Full Likelihood

Lo(0)Fr) = ] dro(t)™® ] (1= dhg(t))' =), (5)

1<i<n 1<i<n

where dJ(tl) = J(tl) - J( i— 1) and dAg( ) Ag(ti) - Ag(tz‘_l).

C. Partial Likelihood
Lo(01Fr) = ] dho(t)™@) T (1 - dhg(ts)) =), (6)
1<i<n 1<i<n
where dAg(t;) = ElLiiyeRn(an)}] and dJ(t;) = L (i)eRn(an)}s With jump detection test statistic

£(5) = eSSt

var rejection region for the jump detection test Ry(an), and overall error rate
o(ti



—

ayp. The instantaneous volatility estimator o(t;) can be based on bipower variation (Definition

2.C.a) as in
9 1 il
U(ti) = m j:i_EK+2 ‘ log S(tj)/S(tj—l)H logS(tj—l)/S(tj—2)|a

where K = bAt® with —1 < a < —1/2 for some constant b, and ¢ = E|u| ~ 0.7979 with u being
a standard normal random wvariable. Alternatively, it can be based on truncated power variation

(Definition 2.C.b) as follows. For any g >0 and 0 < w < 1/2,

—2 At_l izl
o(ti) =— > (log S(t5)/S(tj-1)) Ijiog s(t;)/5(t; 1) <o}

j=i—K

where K = bAt® with —1 < a < 0, for some constant b.3

For the continuous-time jump models, we have the well-defined continuous-time (conditional)

likelihood function L(6|Fr), as in Definition 2.A. The definition of product integration and
the (conditional) likelihood function suggest that we can approximate the likelihood function by
replacing the instantaneous changes by the increments of J(¢) and Ay(t) over ¢;—; to t; and forming
the corresponding finite products. Hence, if there is no diffusion term, the actual data analysis
can be done by the full likelihood, as in Definition 2.B. However, because of the diffusion term,
we do not have direct data for the full likelihood function, in which case, we should use the partial
likelihood, as in Definition 2.C. The intuition for this approach is that this partial likelihood
uses the “jumps” that are pre-identified with a suggested jump detection test and treats them
as data for jump intensity model. Currently, there is no theoretical basis in the literature for us
to simply use Definition 2.C for significance tests to determine jump predictors in continuous
time. Below I show that this partial likelihood based on the detected jumps is sufficient as an

objective function to be maximized, and thus, naive likelihood methods are valid.



In order to apply the partial likelihood, the jump locations must be estimated. These jumps

are required to satisfy certain properties discussed in the following proposition.

Proposition 1. Properties of Estimated Jump Arrivals

Let L(i) be as in Definition 2.C and let Assumption C (see Appendix) be satisfied. Further,
let the rejection region for a chosen test be Ry (ay) = (—00, —qa, Sn — Cn) U (qa,, Sn + Ch, 00),
where qq,, 18 the (1 — ay,)th percentile of a standard Gumbel distribution with oy, being the overall
error rate, Cp, = (2logn)Y/? — (logm + log(logn))/(2(2logn)Y/?), and S, = 1/(21logn)/? with n

being the number of observations. Then, as n — oo (At — 0),

dJ(t:) = J(t:) = J(tim1) = Iegyernan)y — dJ(t:) =1,
for any (ti—1,t;] with a jump, and

dJ(t:) = J(t:) = J(tio1) = Legyernan)y — dJ(t:) =0,

for any (ti—1,t;] without a jump.

Notice that the null hypothesis for the jump detection test is the absence of a jump. This
proposition indicates that for every set of discrete-time intervals during which we do (or do not)
have a jump, we do (or do not) detect the jump by conducting the tests. In other words, jump or no
jump arrival in an interval must be determined by the test, and the interval should shrink to zero
as we increase the frequency of observations. Remember that because we have the diffusion term,
the jump indicator over each interval (t;_1, ;) is not directly observable and must be estimated by
a jump detection technique, which depends on several observations in the rolling window of size

K before the time interval. Unless the jump detection test is properly chosen, the probability of

10



a jump event calculated with the jump detection test (using discrete data from a jump diffusion
model) may not necessarily be the same as the probability of a jump event over each discrete time
interval. As a first step for likelihood approximation, Proposition 1 ensures that the limiting
support of the two probabilities above is indeed the same asymptotically.”?

Threshold qq,, S+ C,, for the rejection region R, (v, ) is dominated in the limit (when n — o)

by the C), term. In particular, it is of the order of y/2logn. One can achieve this exact order

1

of v/2logn when the overall error rate o, satisfies o;, = 1 — e:z:p(—m

), which converges to
zero as n — 0o0. Econometricians can arbitrarily require that «,, — 0 at a faster rate than this (if
preferred) and can thus marginally decide how conservative they would like the outcome to be.
With the local properties in Proposition 1 satisfied, I show in the following proposition how
the second unobservability problem due to the presence of the diffusion process is resolved as

At — 0.

Proposition 2. Asymptotic Equivalence of Partial Likelihood and Full Likelihood
Suppose that Assumptions C and D (see Appendiz) hold. Let L, (60|Fr) and PL,(0|Fr) be as
in Definition 2.B and 2.C, with Fr being the information filtration up to time T'. The estimated

Jumps satisfy the properties stated in Proposition 1. Then, as At — 0 and o, — 0,

PL,(0|Fr) P
T.0F) b @)

when there is a finite number of jumps during time horizon [0,T].

This proposition tells us that the probability that the full likelihood and partial likelihood
are different from each other becomes negligible as we increase the frequency of observations. In

other words, this asymptotic equivalence justifies performing likelihood inference based on de-

11



tected jumps as if they were from pure jump models in the absence of a diffusive component.'?

However, this proposition does not shed light on the relationship between PL,,(0|Fr) and L(6|Fr).
Therefore, this result by itself does not guarantee that the outcome from partial likelihood infer-
ence holds in continuous time. We need the following important proposition to resolve the first
unobservability problem. In particular, Proposition 3 connects the partial likelihood, which we

can use for actual analysis, and the true likelihood.

Proposition 3. Partial Likelihood is Sufficient

Suppose that Assumptions C and D (see Appendiz) hold. Let L(0|Fr) and PL,(0|Fr) be as in
Definition 2.A and 2.C, with Fr being the information filtration up to time T'. The estimated

jumps satisfies the properties stated in Proposition 1. Then, as At — 0 and o, — 0,

L(0|Fr)

when there is a finite number of jumps during time horizon [0,T].

Although this simple result with the likelihood ratios may appear subtle, it is in fact a crucial
step in enabling us to provide the asymptotic distributions for jump predictor tests because
now the limiting behavior between the partial likelihood and the true likelihood in continuous
time becomes clear. This likelihood approximation technique has not been used previously for
making inferences on jump predictors for stochastic jump intensity, and it can be applied to other
contexts. !

Once the above convergence is established, the main results of the selection of jump predic-
tors directly follow along with the implication of the prediction error distribution, as stated in

Theorem 1 below.
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Theorem 1. Jump Predictor Test (JPT)

Suppose that Assumptions C and D (see Appendiz) hold. Let X (t) = [X1(t), Xa2(t), .., Xp(t)] be
the vector of the investor’s jumyp predictor candidates that could affect Ag(t) and let 6 = [0y, ..., 0,)
be the maximum likelihood estimate for effect parameter 6 based on PL,(0|Fr), as in Definition

2.C. Then, the following results hold as At — 0.

O
SE(0)

A. Xi(t) is selected as a jump predictor if Prob (z > ) < B, where B is the chosen sig-
nificance level and z is a standard normal random variable. SE(ék) can be found in the usual
manner from the covariance matriz of Z_l(é), with —Z(0) being the matriz of second-order par-
tial derivatives of the log-P Ly (0| Fr).*2

B. The investor’s prediction error for jump intensity, dAg(t) — dAy(t), asymptotically follows

a normal distribution with mean 0 and variance VdA,Z~1(0)VdAg, where VdAg is the partial

derivative of dM\g(t) with respect to 6.3

My final solution appears similar to the usual MLE methods. However, this work is distin-
guished from others in that I solve the “mixed unobservability” problem described earlier and
I discuss the necessary requirements for the estimated jumps to be used in the analysis. I also
develop a theoretical justification for the naively applied likelihood inference. Finally, the term
“partial likelihood” is also used in the statistics literature for continuous-time counting process
inference using the full likelihood, as in Definition 2.B. The partial likelihood in this paper is
different from the existing approach and is specific to the aforementioned mixed unobservability

problem.
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3 Simulation Study

In this subsection, I examine the finite sample performance of the JPT using a Monte Carlo
simulation. The purpose of this simulation study is to prove whether important jump predictors
can be identified correctly. In summary, the overall results show that the JPT performs well in
distinguishing the effects of jump predictors under general market conditions, including market
interruptions (opening and closing at deterministic times of the day), an asymmetric U-shaped
intraday volatility pattern due to the trading mechanism, leverage effects, jumps in volatility,
and time-varying jump sizes. Although the JPT was developed assuming the absence of some of
these more realistic conditions, this simulation is performed under a realistic setup in order to
demonstrate that the proposed technique provides evidence that is fairly robust to their presence.

For return series generation, I use the Euler-Maruyama Stochastic Differential Equation (SDE)
scheme [see Kloeden and Platen (1992)], which is one of the most widely used methods for sim-
ulating data from continuous-time models. I avoid the starting value effects by discarding five
hundred observations during the burn-in period each time I generate a time series. I generate

15-minute returns over a 1-year horizon from the general model represented as
dlog S(t) = u(t)o(t)dW (t) + Y (t)dJ(t), 9)
where the stochastic volatility model is specified as
do?(t) = k (0 — 02(t)) dt +wo (t)dB(t) + Y, (t)J»(t). (10)

The terms W (t) and B(t) denote standard Brownian Motion processes, J(t) and J,(t) denote
Poisson processes, and E(dB(t)dW (t)) = pdt. The parameter values used are the estimates from
the empirical study by Eraker (2004). Specifically, they are x = 0.0162,60 = 0.573, w = 0.58, and

p = —0.46.

14



For the stochastic jump intensity for both price and volatility, I assume dAgy(t) = jE— 91)791 X))
with §p = —4 and 6; = 3. This parameterization ensures that the intensity (probability) is within
the admissible range of [0,1]. The predictor X (¢) is set to one every week at 10:00am and zero
otherwise in order to mimic real-time news events. The volatility jump size Y, (t) is set to follow
the exponential distribution with mean p, = 1.25, and the price jumps size Y (t) is set relative to
o(t—), the level of stochastic volatility immediately before time ¢. In other words, jump sizes in
prices are assumed to be time-varying.

The number of trading days per year is 252, with 6.5 trading hours per day, interrupted
overnight, and opening at 9:30am and closing at 4:00pm each day to mimic the New York Stock
Exchange. An asymmetric U-shaped intraday volatility pattern is accommodated in the model

by wu(t) specified as in Andersen, Dobrev, and Schaumburg (2008). In particular, u(t) is specified

by the sum of two exponentials with different coefficients to produce the asymmetry, as in

u(t) =c1+ Copen eXp(_aopen X topen) + Celose exp(_aclose X tclose)a (11)

where t,pe, denotes the length of time that has passed since market opening and t.,s denotes
the length of time that remains until the market closes on the same trading day. The constant
parameters used are c¢; = 0.8892, copen = 0.75, Ceiose = 0.25, aopen = 10, and ajose = 10, following
the calibrated setup of Andersen, Dobrev, and Schaumburg (2008).

Table 1 reports the simulation results. Every time the return data are generated, the suggested
method is applied and parameter estimates (éo and 01) are obtained along with their standard

errors (SE(fy) and SE(6,)) and p-values (Prob(z > Sg(ié_)) with ¢ = 1,2) associated with the

estimates. Reported are their averages over three thousand simulation runs. Results based on
both Definition 2.C.a and Definition 2.C.b are provided in the table. As can be seen, the

parameter estimates are on average slightly biased in this type of analysis due to the fact that
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we only use discrete data for this continuous-time model. One way to reduce this bias is to
increase the time horizon. Despite the presence of bias, the results show that the test allows us to
identify the importance of jump predictors fairly precisely with p-values much lower than usual
significance levels such as 1%. This proves that this test is powerful in finite samples.

To save space, I only report results on whether one can correctly identify the jump predictors
using the proposed method. I have also confirmed that the small sample distribution of the
parameter estimates under the null hypothesis is as suggested by the asymptotic theory used
in this paper. The empirical size of the test is close to its theoretical value and there is no
over-rejection problem. Related results are available upon request.

The overall results indicate that the presence of intraday volatility patterns, market closures,
volatility jumps, and time-varying jump sizes will not strongly affect the ultimate conclusion on
the significance of jump predictors. Therefore, the JPT seems to be robust in various market
conditions. The reason for this robust result is that the predicting information is required to be
released often enough before jump arrivals in order to be selected as a significant and important
predictor. This simulation evidence emphasizes the importance of using time-series information
on both jumps and information covariates when identifying the economic determinants of jump
dynamics.!*

In the implementation of jump detection techniques such as the tests introduced by Lee
and Mykland (2008) and Lee and Hannig (2010), it is important to use proper window sizes
and truncation levels for volatility estimation. As is often the case with various nonparametric
methods, the jump detection tests are sensitive to these tuning parameters. In theory, window
sizes K for both Definition 2.C.a and Definition 2.C.b must be large enough (but obviously

smaller than the total number of observations) to remove the effect of price jumps in volatility
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estimation. I use the rules used by Lee and Mykland (2008) and Lee and Hannig (2010) in this
simulation and find that the JPT performs well with the optimal window size, that is, the smallest
integer that satisfies condition K = At® with —1 < o/ < —0.5 for detecting jumps.
Furthermore, Definition 2.C.b requires the optimal truncation level as well. In selecting
these parameters, I follow the suggestion made by Ait-Sahalia and Jacod (2009b), who also use
the truncated power variation estimator for their analysis. The parameter values used are o = 0.47
and g = 4x 7. Since the 6 is unknown in practice and can be time-varying, it is determined using a
data-dependent method. In this simulation study, I apply a jump robust volatility estimator based
on bipower variation using returns in the upcoming window of size K after each truncation time,
which can be applied in the test with Definition 2.C.b.'"» With these properly chosen tuning
parameters, as can be seen in Table 1, the JPT is robust to various realistic market conditions.
The ultimate conclusions drawn from both of the jump detection tests are qualitatively similar.

For the empirical analysis in Section 4, results using Definition 2.C.a are reported.

4 Empirical Analysis for U.S. Individual Equity Jumps

4.1 Data for Equity Jumps

This subsection describes jumps filtered by applying jump detection tests on equity returns. I
select the most actively traded U.S. large-cap component stocks in the Dow Jones Industrial
Average (DJIA) traded on the New York Stock Exchange (NYSE). Data are collected from the
TAQ database, which contains tick-by-tick data for trading information such as transaction time,
price, exchange, and volume information beginning with 1993. My sample extends from January
4, 1993 to December 31, 2008, for a total of 4,017 trading days over 16 years. It is based on

price data from 9:30am to 4:00pm, the normal trading hours on the NYSE. I select transactions
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on the NYSE in order to maintain sufficient degrees of liquidity and a similar organization of
trading mechanisms and trading hours across different stocks. For this reason, two of the 30
stocks are excluded because they are traded on the NASDAQ. I also exclude an additional five
stocks because of a significant incidence of missing data or unusual name changes, either of which
could create significant bias in empirical results.

Table 2 lists the names of the 23 stocks and the S&P 500 index, along with their ticker
symbols.'® This table includes basic descriptive statistics of log returns such as standard deviation,
skewness, kurtosis, and autocorrelations. I use 15-minute stock returns by taking the differences
of log transaction prices. Although a 5-minute frequency has been a popular choice for studying
the volatility of liquid stocks, an even lower frequency is chosen for this jump analysis to ensure
minimal distortion or bias due to noise. Table 2 shows that the sample autocorrelations of returns
are sufficiently small. Furthermore, this sampling frequency is close to 17.5 minutes, the frequency
chosen by Bollerslev, Law, and Tauchen (2009), who utilize volatility signature plots for similar
large-cap companies to determine optimal frequency in their analysis. The simulation study also
confirms that the JPT using this frequency provides satisfactory power. The statistics suggest
that the index and individual stocks have different patterns in return variations. The index has
on average lower mean, lower standard deviation, lower skewness, and higher kurtosis than do
the individual stocks, which means that the variation in index return tends to be driven more by
infrequent extreme negative movements.

Table 2 also includes the descriptive statistics for detected jump counts, that is, the number
of tests undertaken, the number of detected jumps over the sample period, and the average jump
frequencies over a day, a month, and a year. The significance level for the nonparametric jump

detection test is 5%, and I do not exclude the possibility of detecting jumps in overnight returns.
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Results indicate that each year, stocks in the sample experience approximately 21 jumps, from
15 for XOM to 25 for AA, BA, or HPQ. The daily average rate of jump arrival is 8%. This rate
is calculated with the assumption that the jump arrival rate is constant over time. I observe,
however, that jumps do not occur regularly. Therefore, models with constant jump intensities are
not appropriate.

Table 2 also shows that the S&P 500 index has more jumps than an equally weighted index
of the analyzed stocks. It is worth mentioning that unlike evidence in recent studies using high
frequency data, I find a larger number of jumps in the index than in individual stocks.'” The main
reason is the difference in sample periods. For example, Bollerslev, Law, and Tauchen (2009) use
a sample period of January 1, 2001 to December 31, 2005, Lee and Mykland (2008) use a sample
period of September 1, 2005 to November 30, 2005, and Lee and Hannig (2010) use a sample
period of January 1, 2002 to December 2006. In contrast, my sample extends from January 4,
1993 to December 31, 2008. It turns out that the S&P 500 index fund had a greater number
of jumps in years in my sample that are missing from the other studies, namely 1993-1995 and
2007-2008. This result may appear counterintuitive, since we generally expect the index to jump
less than individual stocks due to a diversification effect. However, this is not impossible. First, it
is possible that small co-jumps induced by correlated news escape detection at the individual level
but show up at the aggregate level, as noted by Bollerslev, Law, and Tauchen (2009). Second,
the result is based on the S&P 500 index, which includes many component stocks that are not
analyzed in this study. It is also possible that jumps in other stocks create jumps in this index.

Table 3 presents the times during a day when the jumps arrive. That is, it reports the
percentage of detected jumps during specific time intervals in a trading day among all realized

jumps. I divide the trading hours of the NYSE, 9:30am to 4:00pm, into nine categories. I find
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that more than 86% of individual equity jumps arrive before 11:00am, at approximately the time
of market opening.'® The jumps in the S&P 500 index appear to show a different arrival pattern
within a day. The tendency of index jumps near opening (64% between 9:30am to 11:00am) is
not as high as the tendency for stocks (86%). A significantly higher rate of jumps near market
opening is similar to that of Bollerslev, Law, and Tauchen (2009), who find a significant number
of jumps around 10:00am using a different approach.

Summarizing Tables 2 and 3, I conclude that if jumps occur, they tend to take place in the
morning, while overnight returns do not necessarily include jumps. In fact, there are far fewer
jumps than the number of trading days. The NYSE trading mechanism for opening markets
provides a naturally controlled experiment framework to study whether the market interruption
itself is the cause of jumps in stock prices. Based on my results, I conclude that without infor-
mation that will be reflected in prices, the interruption itself does not trigger jumps. At this
stage, I hypothesize that jumps are triggered when investors’ demand for trading increases due
to information flow in a relatively illiquid market. The jump predictor analysis, to which I now

turn, allows disentangling which information is important enough to trigger jump arrivals.

4.2 Data for Jump Predictors X(t)

This subsection describes the raw data used to create jump predictors. I used a pre-test procedure
to reduce a large number of potential jump predictors to the eight most important predictors. The
procedure is based on how broadly each variable is significant when it is used as a jump predictor
of the individual stocks I consider in this study. To measure the breadth, I use the number of
firms for which each predictor is significant. More detailed descriptions of the pre-test procedure,
alternative information variables, and their data sources are presented in the Appendix.

Table 4 provides details on information variables related to four macroeconomic and four
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firm-specific jump predictors I focus on in this study. It contains the names of the information
variables, their mnemonic abbreviations, the total number of raw data, all dates and times for
each variable, the data source, and the sample period which is matched exactly to the sample
period for the jump data shown in Table 2. The sampling frequency of all information data is set

at 15 minutes to match the sampling frequency of jump data presented in Subsection 4.1.

4.2.1 Macroeconomic Information Variables

The macroeconomic variables I consider in creating jump predictors are U.S. market jumps (MAR-
KET) in the S&P 500 index, Federal Open Market Committee news releases (FOMC), nonfarm
payroll employment report releases (NONFARM), and initial unemployment claims news releases
(JOBLESS). Four different time series of indicators for the arrival times of the information are
used.

For example, the U.S. market jump variable MARKET(¢) is a time series of indicators for
the arrival times of jumps in the S&P 500 index. The significance level o applied to detect U.S.
market jumps is 5%, and the total number of detected market jumps during the sample period is
446. FOMC announcements occur every six weeks, and I have 134 observations. Nonfarm payroll
employment information is released monthly, and 191 observations are incorporated. Jobless
claims information is released weekly, and thus there are many more observations for this variable
than for the other variables. Since the NONFARM and JOBLESS numbers are released outside
trading hours at 8:30am in the morning, I set the indicators for NONFARM(¢) and JOBLESS(¢)
to one at the earliest possible time at which the information can be reflected. In this particular
case, the earliest time is 9:30am. Except for U.S. market jumps, these macroeconomic variables

are released regularly at a pre-scheduled time, as noted in Table 4, for most of the sample period.'”
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4.2.2 Firm-specific Information Variable

In the presence of the aforementioned macroeconomic variables, for each firm I consider the fol-
lowing firm-specific variables in creating jump predictors: earnings announcements (EARNINGS),
analyst recommendations (ANALYST), individual stocks’ past jumps (CLUSTER), and dividend
related dates (DIVIDEND). Similar to the macroeconomic variables, for firm ¢, for example, I
first create a time series of indicators for the arrival times of these information releases and denote
them by EARNINGS,(t), ANALYST,(t), CLUSTER,(¢), and DIVIDEND.,().

For earnings announcements, I collected release times and dates from the First Call Historical
Database, a subsidiary of Thomson Corporation, which many brokerage firms and institutional
investors depend on to disseminate their research reports electronically to their clients through a
news wire service. To minimize data errors, release dates were compared between the First Call
Historical Database and I/B/E/S database. If the dates from these sources were different, I used
the timing information from a Factiva search. For those earnings that are released after trading
hours, I set the indicator of EARNINGS.(¢) for firm ¢ to one at the earliest possible time at
which the information can be reflected. As noted in Table 4, I include all the quarterly earnings
announcements and revisions (if any) by firms over the sample period. The cross-sectional average
number of announcements and revisions is 70 for the 23 firms and the standard error is 10.14.

For analyst recommendations, I collected the comprehensive real-time release history from
the First Call Historical Database. This system provides the dates and time-stamps of analyst
recommendation updates, measured within one minute, which allows us to learn when the in-
formation becomes available to investors and whether it affects jump arrivals. To reduce bias
due to sample selection, I include all types of recommendation changes by all analysts reported

in the database. Note that Womack (1996) examines immediate market reactions to dramatic
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recommendation changes [added to buy (sell) recommendations] made by the highest rated U.S.
brokerage research departments. In contrast, I include not only those dramatic recommendation
changes but also other changes, such as from buy to strong buy. Each recommendation record
from the database contains the ticker symbol of the corresponding firm, the date and time of
the update (up to minutes), and a one-to-five point recommendation scale, with one being most
favorable and five being least favorable. For those analyst recommendations released during non-
trading hours, I again set the indicator of ANALYST,(¢) for firm ¢ to one at the earliest possible
time at which the information can be reflected. As noted in Table 4, the cross-sectional average
number of recommendations is 519 for the 23 firms over the sample period, and the standard error
is 129.85.

I also examine whether past jump arrivals in a specific stock change the likelihood of future
jump arrivals during normal trading hours. In short, I test for evidence of jump clustering, by
which I mean that jump arrivals tend to follow previous jump arrivals. To capture this jump
clustering effects, I use stock jump arrival times in the jump dataset and create a time series of
jump time indicator variables CLUSTER,(¢) for firm c. As noted in Table 4, the cross-sectional
average number of jumps is 348 for the 23 firms over the sample period, and the standard error is
45.30. Further details on the jump data used for this CLUSTER variable can be found in Table
2.

For dividend-related dates, I collected data from the CRSP database. Four major dates
related to dividend payments are available: the dividend announcement date, when the board of
directors announces to shareholders and the market that the firm will pay a dividend; the ex-
dividend date, on (or after) which a stock holder can sell the stock and still receive the declared

dividend payments; the date of record, when investors must be listed as holders to ensure the right
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to a dividend payout; and the date of payment, when the firm mails the dividend to the listed
holders. I found the ex-dividend date to be significant for the majority of firms and hence include
it in my analysis. For firm ¢, I create a time series of DIVIDEND,(¢) indicators that are set to be
one on those dates. As noted in Table 4, the cross-sectional average number of dividend related
dates is 190 for the 23 firms over the sample period, and the standard error is 23.79. (Since I set
the information variable DIVIDEND,(s) to be measured every 15 minutes, I use a divisor of 26
(number of 15-minute observations per trading day) in this case to report the average number of

dates.)

4.3 General Jump Prediction

In this subsection, I specify and estimate a model for general jump prediction with the information
predictors X (t) derived from the indicators discussed previously. In particular, I consider the

following logistic parameterization of the instantaneous jump intensity model for firm c:

dhy(t) = !
T T exp(—00 — 1, 6,X,(1)

(12)
where X (t) = I(9: 30 < h(t) < 10 : 00) is the time-of-day indicator for times between 9:30am
and 10:00am, with h(t) being the hour:minute of time ¢,

Xo(t) = I(10 : 00 < h(t) < 11 : 00) is the time-of-day indicator for times between 10:00am and
11:00am,

Xs3(t) = 1I( ftt—SOmin MARKET(s) > 0) is the indicator for MARKET taking a value of one within
the 30 minutes prior to t,

Xu(t) = I(J;St—i‘][)min FOMC(s) > 0) is the indicator for FOMC taking a value of one within the 30

minutes prior to t,

X5(t) = I( j;;t—30mm NONFARM(s) > 0) is the indicator for NONFARM taking a value of one
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within the 30 minutes prior to t,

Xg(t) = I(ftt—30min JOBLESS(s) > 0) is the indicator for JOBLESS taking a value of one within
the 30 minutes prior to t,

X7(t) = I( ff“day EARNINGS,(s) > 0) is the indicator for EARNINGS for firm ¢ taking a value
of one within one day after ¢,

Xs(t) = I( ftisomm ANALYST.(s) > 0) is the indicator for ANALYST for firm c taking a value
of one within the 30 minutes prior to ¢,

Xo(t) = I(ftighom CLUSTER(s) > 0) is the indicator for CLUSTER for firm ¢ taking a value of
one within the 3 hours prior to ¢, and

Xi10(t) = I(DIVIDEND.(t) x (X1(t) + X2(t)) > 0) is the indicator for morning hours between
9:30am and 11:00am on DIVIDEND dates of firm c¢.?"

Table 5 contains the parameter estimates for all firms listed in Table 2. Coefficients on
controls for intraday seasonal patterns of jump arrivals (in particular, morning hours) appear in
the two left columns after the coefficient for the intercept. I then report coefficients on the four
macroeconomic jump predictors and finally coefficients on the four firm-specific jump predictors
in the subsequent columns. *** *** indicate the JPT results, showing that the corresponding
predictors are significant at the 10%, 5%, and 1% levels, respectively. As recognized earlier in
Table 3, the significance of Xi(¢) and Xa(t) on the time of day between 9:30am and 11:00am
confirms that jumps often tend to occur early in the morning.?!

The significance of predictors depending on market jump arrivals (X3(¢)) provides strong
evidence that overall market jump arrivals increase the likelihood of individual equity jumps
within 30 minutes. This predictor is significant at the 1% level for all firms except for GE,

for which it is significant at the 5% level. Another noteworthy macroeconomic variable is FOMC
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announcements on federal fund rate changes (X4(¢)). Results indicate that FOMC announcements
are likely to induce individual equity jump arrivals within 30 minutes. Since this information is
usually released in the afternoon at 2:15pm, this means that the jumps are likely to arrive between
2:15pm and 2:45pm on these announcement dates. Considering the magnitude of the coefficient
on this predictor, this is the most influential predictor of U.S. individual equity jumps among
all those considered. The other two macroeconomic predictors (X5(t) and Xg(t)) are indicators
of times shortly after the release of employment and unemployment reports. Given their actual
release times, which is 8:30am for both cases, the results show that jumps are likely to occur
during the first half hour of NYSE trading (9:30am to 10:00am). Except for the case of CVX for
nonfarm payroll reports and the cases of DIS and GE for initial jobless claims, these two jump
predictors are significant mostly at the 1% level.

Among the firm-specific jump predictors, the largest coefficient is found for X7(¢), which indi-
cates times within one day before earnings releases, and it is the second most influential predictor
after X4(t), related to FOMC announcements. Earnings announcement information is the only
information that tends to induce jump arrivals before their release time. This exception may occur
because of possible information leakage or because firms sometimes do not release information
at pre-scheduled times. All the other pre-scheduled variables such as FOMC, NONFARM, and
JOBLESS tend to induce jump arrivals within the first 30 minutes after the news releases.

Another important firm-specific jump predictor is Xg(t), which indicates times within the 30
minutes after analysts publish their recommendations. As can be seen in Table 5, it is significant at
the 1% level for all firms except for XOM, for which it is significant at the 5% level. Notice that in
this paper, this predictor is created to indicate the first 30 minutes after analysts’ recommendation

releases. Therefore, investors are supposed to observe recommendation releases before jump times,
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making a short-term prediction in real-time. Controlling for all the aforementioned predictors,
I find that the third and fourth most important among the firm-specific predictors are Xg(t)
indicating morning hours (from 9:30am to 11:00am) of ex-dividend dates (significant at the 10%
level for 14 out of 23 firms) and Xj¢(t) indicating arrivals of the same stock jumps within the
previous three trading hours (significant at the 5% level for 15 out of 23 firms), which provides
evidence of jump clustering.??

Of most economic interest in this type of study would be the magnitude of the coefficient esti-
mates and their interpretation. Since the instantaneous jump intensity for each firm is estimated
using the time-series logistic regression model (which links jumps to the various information pre-
dictors), one can express the instantaneous odds in favor of jump arrival (relative intensities of

jump and no jump arrival) at time ¢ as follows:

10

= exp Oy + Z Qij(t) . (13)
j=1

dAy(t)
1 —dAy(t)

Because the jump predictors are set up to be the indicators of times around information
releases, taking values of either 0 or 1, one can conclude that the jth jump predictor X;(t) allows
us to predict an increase of 6; units in the log-odds in favor of jump arrival in the corresponding
stock price. Alternatively, but perhaps preferably, one can also conclude that the impact of the
jth information arrivals is to increase the predicted odds of jump arrival in the individual stock
price, multiplicatively by the factor of exp(6;). If there is no information release at time ¢, and
hence all the jump predictors (X;(t)’s) are set at 0 at time ¢, the predicted odds of observing
a jump at that time is then exp(fp). To give an example, Table 5 shows that the parameter
estimate of 04 for Home Depot (HD) is 4.01. This means that the predicted odds of jump arrivals
in the Home Depot stock price are generally increased by a factor of exp(4.01) = 55.15 within

30 minutes after FOMC announcements relative to that in other times without the news. If the
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information is released in morning hours, the increase in the predicted odds of jump arrivals is
interpreted relative to the odds during morning hours without the news releases. Other parameter
estimates can be interpreted similarly and represent strong economic significance for the selected
predictors.

It is worth emphasizing here that jumps associated with the ex-dividend dates are most likely
not linked to information shocks but rather are probably due to short-term trading activity on
the ex-day to take advantage of possible arbitrage profits. A sizable amount of the literature
focuses on short-term trading activity on ex-dividend dates and abnormal returns in relation to
differential taxation between dividend and capital gains.?® In a similar vein, I also investigated
whether the magnitude of dividend yield matters for price jumps and whether dividend-related
jump intensities were affected by a significant change in tax policy on dividend and capital gains
taxation since the Jobs and Growth Tax Relief Reconciliation Act (signed in May of 2003) falls
within the sample period of this study. I find no strong evidence to support these hypotheses

using the JPT.

4.4 Separate Predictions for Systematic and Idiosyncratic Jumps

In this subsection, I investigate whether it is possible to distinguish systematic and idiosyncratic
jumps using the JPT. To accomplish this goal, I specifically define systematic jumps to be jumps
detected in the S&P 500 index. Idiosyncratic jumps are defined to be all the detected jumps for
each firm after excluding the systematic jumps as well as cojumps that occurred simultaneously
in at least two firms. These simultaneous jumps are further excluded in order to remove any
industry effect or some other common effect that is unidentified by the S&P 500 index jumps but
is not considered to be entirely idiosyncratic.

Once jumps are classified as mentioned above, the separate intensity models for systematic
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and idiosyncratic jumps are set up as

systematic 1
dAey 17 A (t) — — - = 4 ' ,
1+ exp(—bo Zj:l 0;X;(t))

1
 Ltexp(—f — 302, 0;X,(t)

where the definitions of X(t) are described in Subsection 4.3. As in the general jump intensity

(14)

idiosyncratic
dA’ (t

(15)

model, both models include the terms to control for intraday seasonal patterns of jump arrivals.
The macroeconomic and firm-specific predictors are included for both models. Tables 6 and 7
contain the parameter estimates of the systematic and idiosyncratic jump intensity models for each
firm. *** *** indicate the JPT results, showing that the corresponding predictors are significant
at the 10%, 5%, and 1% levels, respectively.

Table 6 shows that distinguishing systematic jumps is possible using the important macroe-
conomic predictors. All the macroeconomic predictors (Xs(t), X4(t), X5(¢) and Xg(t)) are shown
to be strongly significant at the 1% level without exception. X4(t) related to FOMC announce-
ments is proven to be the most influential systematic jump predictor, followed by X5() related to
nonfarm payroll employment information. X3(t) and Xg(¢) related to overall market jumps and
jobless news releases are also shown to be fairly important and precise predictors. The significance
of the predictors indicating times after market jump arrivals (X3(¢)) suggests strong evidence of
systematic jump clustering, which means that systematic jumps tend to increase the likelihood
of systematic jumps within a short-time horizon of 30 minutes.

Comparing the average magnitudes of the coefficients for the firm-specific predictors to those
for the macroeconomic predictors, the macroeconomic predictors are much more important for
systematic jump prediction in U.S. stock markets. As expected, the firm-specific predictors are
mostly insignificant in the systematic jump prediction. One exception is Xg(¢), which is the

predictor indicating three trading hours after individual stock jumps. Individual stock jumps are
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shown to increase the likelihood of systematic jumps within three trading hours (for 19 out of 23
firms at the 5% level). Given that I consider large stocks included in the Dow Jones Industrial
Average Index for this study, it is possible that an extreme shock realized in one large individual
firm may increase uncertainty in the overall market, triggering systematic jumps due to short-term
cross-autocorrelation effects in jump components.

Table 7 reveals that X7(¢) related to corporate earnings announcements is the most important
idiosyncratic jump predictor, followed by Xg(t) related to analysts’ recommendation releases.
Both predictors are strongly significant at the 1% level for all firms (with one exception of XOM
for Xg(t)) and are associated with the two largest coefficients among all predictors considered.
Individual stock jumps and dividend information remain influential for some firms (Xo(¢) (X10(t))
is significant for 14 (9) out of 23 firms at the 5% level). Comparing the average magnitudes of
the coeflicients for the macroeconomic predictors to those for the firm-specific predictors, the
firm-specific predictors are proven to be more useful for idiosyncratic jump prediction in these
individual stock markets.

Results show that for some firms, macroeconomic jump predictors remain important in pre-
dicting their idiosyncratic jumps. Hence, the macroeconomic news releases not only are likely to
trigger jumps in the overall market, but also occasionally induce stock price jumps in the absence
of systematic jumps. This could be because some macroeconomic news may not be broadly in-
fluential enough to trigger jump at the market level, whereas one individual stock could be more
sensitive to the news to experience dramatic changes in prices. This evidence simply demonstrates

the important role of macroeconomic information in extremely volatile stock markets.
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4.5 Jump Size Clustering and Implications

In the analysis of jump dynamics, it is also important to understand how jump sizes changes over
time. Jump size dynamics can be easily investigated by applying the JPT to jumps with different
jump sizes after classifying them according to their size. Using the suggested technique, I show
evidence of jump size clustering in this subsection.

As an initial step, I classify all the detected jumps for each firm into two size groups after
observing its jump size distribution as presented in Table 8. The first group (inner-quartile jump
group) includes jumps whose jump sizes are less than the upper quartile and greater than the
lower quartile of the jump size distribution for the firm. The second group (outer-quartile jump
group) includes jumps whose jump sizes are greater than the upper quartile and less than the
lower quartile of the jump size distribution for the same firm. Then, I create the inner and outer
quartile jump group indicators (CLUSTERY"(¢)) with gr = inner or outer, for firm c.

The jump intensity model for jump size clustering is specified as

1
dAJ" () = —
0 ( ) 1+ exp(—Ho - Zj QJXJg (t))

(16)
where X{"(t) = X1(t) = 1(9 : 30 < h(t) < 10: 00) is the time-of-day indicator for times between
9:30am and 10:00am, with h(¢) being hour:minute of the time ¢,

X{"(t) = Xo(t) = I(10 : 00 < h(t) < 11 : 00) is the time-of-day indicator for times between
10:00am and 11:00am,

X§"(t) = I(j;;t_%ows CLUSTERY"(s) > 0) is the indicator for CLUSTERY" for firm ¢’s gr-quartile
jumps, taking a value of one within 3 hours prior to ¢, and

X9"(t) = 1I( tfﬁ&fxfs CLUSTERY"(s) > 0) is the indicator for CLUSTERY" for firm ¢’s gr-quartile

jumps, taking a value of one between 3 and 10 trading hours prior to t. As in the previous

application, time-of-day indicators for the morning hours are included to control for the intraday
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seasonal pattern of jump arrivals.

Table 8 reports the characteristics of the detected jump size distribution for all firms listed
in Table 2. The estimation results for inner(outer)-quartile jump clustering are also presented.
As in other tables, *** *** indicate the JPT results, showing that the corresponding predictors
are significant at the 10%, 5%, and 1% levels, respectively. It shows that both inner and outer
quartile jumps are likely to cluster separately within a short time horizon of 3 trading hours and
up to 10 trading hours. The results are consistent with the jump clustering evidence presented
in Table 5. Both sized jumps are shown to be short-lived up to 10 trading hours. The outer-
quartile jumps are more likely to cluster over longer trading hours than are inner-quartile jumps.
The impact sizes (measured by the average magnitudes of coefficients) of outer-quartile jumps on
similar jumps in the future tend to be slightly greater than those of inner-quartile jumps.

The evidence found in this study offers explanations for some existing evidence documented
in the literature. For example, it is worth noting that the jump size clustering can influence the
well-known volatility clustering, since traditional volatility measures do not treat returns due to
jump components separately from returns due to diffusion components. Another related study is
on aggregate idiosyncratic variance by Bekaert, Hodrick, and Zhang (2010). The authors study
the idiosyncratic variances estimated using realized variances of the residuals from empirical asset
pricing models as in Campbell, Lettau, Malkiel, and Xu (2001) and Fama and French (1996).
They identify a large number of structural breaks in their idiosyncratic variances and investigate
the dynamics of idiosyncratic variances using regime shifting models. They also document the
importance of macroeconomic uncertainty in explaining time-variation in idiosyncratic variance.

If the idiosyncratic realized variance is estimated by their approach, their estimates essentially

represent total variations from both diffusion and jump components in jump diffusion models
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(including systematic jumps). In other words, variations from jump components are embedded
in their traditional idiosyncratic variance estimates. Therefore, one can interpret that structural
breaks in the idiosyncratic variances are partially due to the presence of jumps in returns. In
particular, if (sizes of ) jumps cluster as shown in this paper, their idiosyncratic variance will stay in
a higher-variance regime for a period of time in their two-regime shifting model until it comes back
to a lower-variance regime without jump clustering. Moreover, their finding of macroeconomic
information as important determinants of idiosyncratic variances can be explained, since the
presence of jumps (especially, systematic jumps that are likely to be driven by macroeconomic

predictors and market index jumps) contributes to the time variation in idiosyncratic variance.

5 Concluding Remarks

This article examines the predictability of jumps in individual stock returns. Assuming that stock
prices move continuously, following the jump diffusion models, but that econometricians can only
observe stock price data at discrete times, I first resolve the technical problem of identifying jump
predictors and propose a new empirical test which allows us to discover multiple predictors up to
the intraday level and assess their relative importance and precision. The theoretical result for
statistical inference is very general and can be useful for other empirical studies. As long as high
frequency observations for target returns and jump predictors are available for a sufficiently long
sample period, this technique can be applied to analyzing general jump dynamics as well as any
specific types of jumps in various financial markets.

I show that one can predict general jump arrivals in U.S. individual stock returns using both
macro-level and micro-level information. In particular, macroeconomic information arrivals such

as Fed announcements, nonfarm payroll reports, overall market jumps, and initial jobless claims
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tend to significantly increase the likelihood of individual stock jump arrivals within a short time
horizon such as 30 minutes. I also find strong evidence that stock price jumps tend to occur
within one day before earnings announcement times, within the first 30 minutes after analysts’
recommendation releases, within three trading hours immediately after the same stock experi-
ences jumps, and during the morning hours on ex-dividend dates. I further examine whether one
can distinguish systematic jumps and idiosyncratic jumps using these important predictors. All
the aforementioned macro-level information variables are proven to be very important in system-
atic jump prediction, while earnings and analyst recommendation releases are associated with
better predictors for idiosyncratic jumps than dividend and individual stock jump information.
Overall, the evidence demonstrates an important role of macroeconomic fundamentals in extreme
stock returns, “jumps” with important implications for asset pricing, hedging strategies, portfolio

diversification, and risk management.
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Figure legends

Figure 1: Intuition of Jump Predictor Test

This graph illustrates an example of seven jump arrivals over a given time horizon and shows
how the proposed test identifies the information covariates predicting those jump arrivals. These
arrivals of jumps are not directly observable from discrete data from continuous-time models in
practice. The JPT requires estimating the location of those jump arrival times (from the 1st to
the 7th) by jump detection tests (for example, see Lee and Mykland (2008) or the big jump test
in Lee and Hannig (2010)) as a necessary step. The time-series data for both these estimated
jumps and information covariates are employed for the JPT. The likelihood approximation for
this regression-type analysis is explained in Figure 2. A time-series indicator for jump arrivals is
created and linked to the predictors related to information variables. The multiple candidates for
jump predictors (to become independent variables) should be from the information set available
up to each time jumps arrive and the information set is updated over time. The jump arrival
indicators based on the jump detection tests are required to satisfy the properties listed in Propo-

sition 1. See Section 2 for more details.

Figure 2: How the Mixed Unobservability Problem is Resolved

This graph illustrates how the jump predictors are identified in continuous-time models. Note

that the goal of the inference is to approximate the true likelihood L(0|Fr) for stochastic jump
intensity models within jump diffusion processes with an empirical likelihood which depends
on available discrete data. I suggest using partial likelihood PL,(0|Fr), depending on jumps
filtered by multiple jump detection tests and available covariates. The line between partial likeli-

hood PL,,(0|Fr) and full likelihood L,,(8]|Fr) represents their asymptotic equivalence, indicating
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that partial likelihood PL,,(0|Fr) approximates full likelihood L, (0|F7). The line between full

likelihood L,,(0|Fr) and true likelihood L(0|Fr) again indicates that full likelihood L,,(6|Fr) ap-

proximates true likelihood L(6|Fr), which is the ultimate likelihood that needs to be optimized
in order to identify the jump predictors in continuous-time models. Mathematical definition of

three likelihoods can be found in Definition 2. More details are in Section 2.
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Footnotes

1. See Bakshi, Cao, and Chen (1997), Duffie, Pan, and Singleton (2000), Ait-Sahalia (2002),
Andersen, Benzoni, and Lund (2002), and the references therein.

2. See Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Vega (2003), Wongswan
(2006), and the references therein for the impact of macroeconomic fundamentals on foreign
currency exchange markets, futures markets, treasury (bond) markets, and international stock
markets.

3. Econometricians have explored ways to distinguish jump risk from volatility risk using discrete
observations from continuous-time models. See Ait-Sahalia (2004), Andersen, Bollerslev, and
Dobrev (2007), Huang and Tauchen (2005), Barndorff-Nielsen and Shephard (2006), Jiang and
Oomen (2008), Ait-Sahalia and Jacod (2009b), Lee and Mykland (2008), and the references
therein.

4. See Protter (2004) for the usual technical conditions that this filtration satisfies.

5. This doubly stochastic Poisson process is also known as a Cox process and applied in modeling
corporate default events in recent studies by Duffie, Saita, and Wang (2007) and Das, Duffie,
Kapadia, and Saita (2007), among others.

6. There is some evidence of extremely small jumps (see Ait-Sahalia and Jacod (2009a), and
Todorov and Tauchen (2008), among others). Although it would be interesting to characterize
the dynamics of extremely small jumps, doing so is beyond the scope of this paper.

7. This definition of product integration is created for this study in order to explain the likelihood
approximation. Though a similar concept is used in Andersen, Borgan, Gill, and Keiding (1992)
for counting processes, these authors do not intend to describe it in the presence of the diffusion

term in their model.
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8. For the jump detection test, the null hypothesis is the absence of a jump, and hence, rejecting
the null indicates the presence of a jump. The simulation study in Section 4 is based on these two
estimators, and various parameter choices are suggested for actual applications therein. Term K
in the definition is a window size within which a local movement in the process is considered.
These are used in Lee and Mykland (2008) and Lee and Hannig (2010) for conducting jump
detection tests. For the asymptotic arguments, K needs to satisfy slightly different conditions
depending on the choice of volatility estimator. However, all the conditions are imposed to make
the effect of jumps in volatility estimation negligible. Other candidates for 0/(7;) are consistent
stochastic volatility estimators such as the multipower variation based estimators, which include
tripower or quadpower variations as special cases. In finite samples, the bipower variation has
finite sample bias due to jumps, and multipower variations share similar finite sample bias. The
simulation study suggests that the marginal benefit of using more orders in power variation is not
significant in the JPT application.

9. The global property of one of the jump detection tests (Definition 2.C.a) was mentioned in
Lee and Mykland (2008), but this local property must be satisfied.

10. This result can essentially be achieved by the application of jump tests that satisfy the
properties stated in Proposition 1, which enables us to separate jumps from the jump diffusion
models. See Lee and Mykland (2008) and Lee and Hannig (2010) for more details on this issue.
11. A similar technique is applied in Mykland and Zhang (2009) for estimating the volatility or
leverage effect, which is the correlation between return and volatility processes in asset prices.
12. The formula for —Z(#), the matrix of second-order partial derivatives of the log-partial

likelihood function, is

20=- 2 5, eHOgdA@ DaI(t) = 3 75 Hllog (1—dho(t:))(1 — di(t)).  (17)

1<i<n 1<i<n



13. As usual, VdAy can be estimated by replacing 6 with 6. 0 is asymptotically normal under the
null hypothesis around its mean fy with its covariance matrix —Z~1(fy).

14. It is ideal to adjust individual returns for intra-day volatility patterns when detecting jumps
before applying JPT. However, as also mentioned in Bollerslev, Law, and Tauchen (2009), there
is no obvious solution for this adjustment in most realistic settings because the relative impor-
tance of volatility and jumps changes continuously over time (also across days) and any volatility
measurements which depend on observations at particular times of the days still will not com-
pletely resolve this problem. As stated, this intraday volatility problem does not matter in the
identification of jump predictors by the JPT.

15. Though other jump robust estimators based on multipower variation can be used for the same
purpose, applying estimators based on multipower variation here does not significantly change the
results.

16. I list in the table the symbols used as of December 31, 2008. For the data collection, I first
checked if there were changes in the symbol and confirmed that the observations are from the
same firm before and after the change.

17. This finding on the relative number of jumps in the index and in individual stocks is robust
to the choice of the diffusive volatility estimator, and also holds for the estimator based on mul-
tipower variation.

18. To mitigate the noisy data problem, I removed from the sample all the observations that
might be driven by the bounce-back effect. One could further improve the results by modeling
noise explicitly in the analysis.

19. Before April 1995, FOMC news was not released regularly at the time specified in Table 4.
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I follow Andersen, Bollerslev, Diebold, and Vega (2003) for the irregular release time as in the
table note and regular release times of 11:30am for the years before 1994.

20. As noted in the earlier section, depending on application, other functions for jump intensity
can be applied instead of the simple logistic function.

21. Note that these time-of-day indicators only depend on time, and hence are deterministic.
Therefore, they can be created before time t.

22. In order to make sure that the overall conclusions based on the proposed method is not the
outcome of in-sample overfitting, I check whether the relative importance of the selected pre-
dictors is stable over time. Specifically, I split the total sample period from 1993 to 2008 into
two subsample periods. I estimate the same jump intensity models separately over the two non-
overlapping subsample periods and find that their relative importance stays the same.

23. For example, Michaely (1991) analyzes the effect of the 1986 Tax Reform Act (TRA) on
the ex-dividend day stock price behavior and finds that the tax change had no effect on the ex-

dividend stock price behavior. Also, see Lasfer (1995) and related references therein.
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Figure 1: Intuition of Jump Predictor Test (JPT)
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Figure 2: How the Mixed Unobservability Problem is Resolved
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Table 1: Simulation Results of the Jump Predictor Test (JPT)f

Definition 2.C.a Definition 2.C.b
In the presence of U-shaped intraday volatility and jumps in volatility
oy bo SE(6) p-value fo SE(fy) p-value
4o(t™) -3.9986  0.0934 0.0000 -4.0202  0.0943 0.0000
8o(t™) -3.9992 0.0934 0.0000 -4.0211  0.0944 0.0000
120(t~) -4.0034 0.0936 0.0000 -4.0250  0.0946 0.0000
gy 6, S E(§1 ) p-value 6, SE (él ) p-value

4o(t~) 2.9506 0.3372 4.4562¢-006 2.9456  0.3395 5.8270e-006
8o(t™) 29478  0.3373  7.0656e-007 2.9421  0.3397 9.9900e-007
120(t7) 29510 0.3374 5.9852e-007 2.9434  0.3400 5.1609e-007

T This table contains averaged simulation results from the proposed procedure described in Sec-
tion 2 using the two tests as defined in Definition 2.C.a and 2.C.b. All the figures in this
table are results averaged over 3,000 simulation runs. 15-minute returns over 1 year are gen-
erated from the general model that accommodates the presence of price jumps with stochastic
jump intensity, U-shaped asymmetric intraday volatility, jumps in volatility, time-varying jump
sizes, and leverage effect. It is assumed that market opens at 9:30am and closes at 4:00pm.
The model is specified as dlog S(t) = u(t)o(t)dW (t) + Y (¢)dJ(t), and the stochastic volatility
model is specified as do?(t) = k(0 — 02(t)) dt + wo(t)dB(t) + Yo (t)Jo(t), where W (t) and
B(t) denote standard Brownian Motion processes and J(t) and J,(t) denote Poisson processes,
E(dB(t)dW (t)) = pdt. The parameter values used for the simulation are the estimates from the
empirical study by Eraker (2004). They are k = 0.0162,0 = 0.573, and w = 0.58, p = —0.46.

For the jump intensity model, I assume that dAg(t) = with g = —4 and

TFoxp(=0 01 X1
01 = 3. Here, the predictor X1 (t) is set to become 1 every week at 10:00am to mimic real-time
news events. Sizes for jumps in volatility Y5 (¢) follow the exponential distribution with its
mean i, = 1.25 and time-varying sizes for jumps in prices Y () are set in comparison to o(t~)
volatility level immediately before time ¢. u(t) for the asymmetric U-shaped intra-day volatil-

ity pattern is modeled as in Andersen, Dobrev, and Schaumburg (2008) and their calibrated

parameter setup. See further details in Section 3.
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Table 3: At What Times do Jumps Occur more often?’

Ticker 9:30am 9:45am 10:00am 10:15am 11:00am 12:00pm 1:00pm 2:00pm 3:00pm
SPY  0.6300 0.0157  0.0314 0.0650 0.0269 0.0336  0.0291 0.0605  0.0561
AA 0.5917 0.1320  0.0636 0.0685 0.0318 0.0318  0.0098 0.0244  0.0269
AXP 0.6065 0.1272  0.0207 0.0621 0.0237 0.0089  0.0325 0.0355  0.0533
BA 0.5892 0.1516  0.0636 0.0733 0.0244 0.0147  0.0244 0.0196  0.0269
CAT 0.6087 0.1535  0.0716 0.0486 0.0179 0.0230  0.0153 0.0205  0.0256
CVvX 0.6021 0.1725  0.0387 0.0387 0.0070 0.0106 ~ 0.0141  0.0317  0.0599
DD 0.6198 0.1725  0.0575 0.0511 0.0256 0.0096  0.0096 0.0160  0.0288
DIS 0.6576  0.1603  0.0462 0.0408 0.0136 0.0054  0.0190 0.0109 0.0190
GE 0.6632 0.0687  0.0241 0.0790 0.0412 0.0069  0.0206 0.0172  0.0378
HD 0.6224  0.1607  0.0408 0.0536 0.0230 0.0128  0.0204 0.0357 0.0128
HPQ 0.6399 0.1582  0.0535 0.0389 0.0268 0.0122  0.0195 0.0195 0.0219
IBM  0.6501 0.1405  0.0386 0.0523 0.0220 0.0165  0.0138 0.0193 0.0138
JNJ  0.6341 0.1229  0.0447 0.0531 0.0168 0.0112  0.0223 0.0223  0.0475
JPM  0.6272 0.1069  0.0405 0.0578 0.0434 0.0145  0.0173 0.0289  0.0434
KO 0.7544 0.1103  0.0320 0.0285 0.0142 0.0142  0.0142 0.0071  0.0214

MCD 0.6070 0.1551  0.0294 0.0428 0.0348 0.0187  0.0241 0.0348 0.0374

MMM 0.5156 0.1656  0.0906 0.0469 0.0375 0.0219  0.0156 0.0125  0.0656

MRK 0.581 0.1598  0.0387 0.0490 0.0258 0.0155  0.0103 0.0232  0.0670
PFE 0.6176 0.1628  0.0413 0.0413 0.0439 0.0207  0.0181 0.0155  0.0310
PG 0.6594  0.1377  0.0290 0.0906 0.0000 0.0181 0.0036  0.0145  0.0326

T 0.6280 0.1297  0.0444 0.0410 0.0205 0.0239  0.0171  0.0239  0.0478

UTX  0.5233 0.1699  0.0548 0.0877 0.0521 0.0219  0.0219 0.0137 0.0384

WMT 0.6243 0.1469  0.0367 0.0508 0.0169 0.0226  0.0226  0.0169  0.0508

XOM 0.6877 0.0830  0.0356 0.0593 0.0158 0.0158  0.0158 0.0316  0.0356
AVE  0.6224 0.1412  0.0451 0.0546 0.0252 0.0161 0.0175  0.0215  0.0367

T The table reports the percentages of jumps in individual equities and the S&P 500 index detected at specific time intervals

in a trading day among all detected jumps during the sample period from January 4, 1993 to December 31, 2008 for a total

of 4,017 trading days. The NYSE trading hours (9:30am to 4:00pm) are divided into 9 time intervals. Column names are the

starting points of the time intervals. For example, the first column (9:30am) includes the percentages of jumps that occurred

during the time interval starting at 9:30am and ending at 9:45am.
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Appendix

A.1. Assumption C on p(t) and o(t) in equation (1)

It is assumed that the drift and diffusion coefficients do not change dramatically over a short
time interval, allowing them to depend on the process itself. It satisfies most of continuous-time
models in the asset pricing literature. See Lee and Mykland (2008) for more detailed mathematical

assumptions on the p(t) and o(t) coefficients.

A.2. Assumption D on Ay(t) in equation (2)

Here, a note is made on the minimal assumption imposed on X (¢). X (t) is required to be a
Fi-predictable process. In other words, each of X (¢)’s components is supposed to be determined
according to information observable at any time up to t. X (¢) can be deterministic variables such
as time (time of the day or day of the week), exogenous information variables available before
t, jump indicators observed at any time up to t, waiting time since the last jump time, jump
indicators from other markets observed at any time up to ¢, or other state variables forecasted
using a conditional expectation based on dynamic (time-series) models. For the formation of
the expectation, there is no restriction on the type of static or dynamic model specification or
estimation procedures. The integrated intensity function Ag(t) is only required to be continuous
and differentiable so that the Martingale central limit theorem can hold and the solution for the
corresponding score function exists and is consistent.

The following assumptions are imposed on Ay(t), which is a modified version of Condition
VL.1.1. in Andersen, Borgan, Gill, and Keiding (1992). Denote by 6y the true value of parameter
and 6 the free parameter. Let T be a given terminal time, 0 < T" < oo, and n be the number of

observations within terminal time 7.
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D.1. There exists a neighborhood ©g of 6y such that for all n and 6 € O, log dAy(t) and dAy(t)
are three times differentiable with respect to 8 € ©y.

D.2. There exist finite functions o;;(#) defined on ©¢ such that for all j,1,

1 /T 9 9
> /0 (557 Tom i, (1)} (55 Tor o, (1) gy ()t 25 ().

as n — 00. Moreover, the matrix ¥ = {0;;(6)} is positive definite.

D.3. For all j and € > 0, we have

1 T 0 2 p
— — I 1 A A —
o | g 1m0 (1 tordha(9)] > €) dhay(s)ds 50,

as n — oQ.

D.4. For any n, there exist G, and H,, such that

83
sup | dAg(t)| < Gu(t)

0cO, (‘)Hj&@l&@m

and

3

sup | log dAg(t)| < Hy(t)

0
0cO, 89j89189m

for all j,1, m. Further,

/ Gty / H, (1)dAg, (1) / {89 aellogd%“} digy (1)t

all converge in probability to finite quantities as n — oo, and for all € > 0,

T
i/o H,(t)I (W > e) dMg, (t)dt 5 0.

A.3. Proof of Proposition 1

With the rejection region Ry (o) = (—00, —qa,,Sn — Cn; qa, Sn + Cn, 00), if dJ(t;) = 0 for each
single interval (t;_1, ],
P(dJ(t;) =0=dJ(t;)) =1— P(L(i) € Rn(an))

o6



— 1 2(1— ®(ga, Sn +Cn)) ~ 1 2(1 — &(y/2logn)) ~ 1 — \/7771\1/@ L1, (18)

as n — 0o, i.e., At — 0. ®(x) is the standard normal cumulative distribution function. The last
approximation is due to the asymptotic expression for 1 — ®(x) as x — oo, which is limy,_00 (1 —
®(z))e”"/2 = (2r)~ /2. See Galambos (1978) for its derivation.

If dJ(t;) = 1 for an interval with its jump time 7 € (t;_1, ],
P(dJ(t;) =1=dJ(t;)) = P(L(i) € Rp(an)) = P([Y(7)| > (qa,,Sn + Cpn)o(T)V At)

~ 1y (o(r) /=25 log(A1) ) ~ 1 - J%a(f)\/—zm log(AL) — 1, (19)

as At — 0, and hence o(7)y/—2Atlog(At) — 0. Fjy|(y) is the distribution function of absolute
jump sizes |Y| and o(7) denotes the local volatility level at jump time 7.
A.4. Proof of Proposition 2

I decompose the full likelihood function into two different mutually exclusive parts for actual jump

times and non-jump times, as follows:

Ln(0|Fr) = I dnre)™™ [T @ —dag(t)) =/t
1<i<n,dJ(t;)=1 1<i<n,dJ (t;)=1
(2?{1) (2?{2)
x ] dhe)E T (= dAg(ta) 0, (20)
1<i<n,dJ(t;)=0 1<i<n,dJ(t;)=0
(20.3) (20.4)

where Ag(t) = (¢, X (t);6).

The second (20.2) and third (20.3) products are one under the full observations from the jump
models without diffusion term. Hence, it is enough to show that both of these two products (20.2)

and (20.3), based on results by the jump detection tests, become one, with probability one, as

o7



At — 0, so that the other two products based on the results by the jump detection tests match
the corresponding ones, (20.1) and (20.4).

For term (20.2), let H be the finite number of jumps during the time horizon and 7, be the
jump times in [0, 7] with h = 1, ..., H. Then, from Proposition 1, as At — 0,

—dJ(t:)

P I1 (1 - df\g(ti))l —1H| =P (for all i s.b. dJ(t;) = 1, dJ(t;) = 1|H>

1<i<n,dJ(t;)=1

H
~ |1 [1 o (J(Th)s/—2At 1og(At))} ~1- \/% 3 o(m)y/—2Atlog(Al) - 1, (21)

1<h<H h=1

where Fjy|(y) is the distribution function of absolute jump sizes Y| and o(7;,) denotes the local
(bounded) volatility level at the hAth jump time. Notice here that only the finite activity jumps
are allowed with finite number H of jumps to obtain this result.

For the term (20.3),

P [ dhe(t)¥® =1m|=p (for all i s.t. dJ(t;) =0, dJ(t:;) = 0\H>
1<i<n,dJ (t;)=0

~ P L(1 R(an) | =G(qa,) =1 —an — 1, 22
(om0 € Rian)) = Glao,) = 1= = )

as ¢a, — 00 and a, — 0, with the distribution function of a standard Gumbel variable G(qa,, )-

Therefore, the result holds, because

p<W:1|H>

Ln(e‘JrT)
. 1—dJ(t;) R R
_p 11 (1 ~ dAg(ti)) —1H | xP I dhot)™® =1y
1<i<n,dJ(t;)=1 | <i<ndJ(t)=0
5 H
~ll=—= —2At1 At X (1 —ay) — 17 23
( Jon ;O‘(Th) og( )) (1—ay) (23)

as At — 0 and «,, — 0. Note that this pointwise convergence in probability combined with the
results of Newey (1991) imply uniform convergence in probability in a compact subset of © due

to Condition D.
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A.5. Proof of Proposition 3

By the definition of product integration,

LalO1Fr) as g pich implies

L(6]Fr) L(6]Fr)

Lal01F7) P, (24)

Thus, due to Proposition 2,

PLn(0|Fr) _ PLa(01Fr)  La(01F1) P, 25
LO|Fr) L0 Fr) L(6|Fr) - )

A.6. Proof of Theorem 1

Given Assumption C, we know that as At — 0, for any 6, log(L,,(0|Fr))—log(PL,(0|Fr)) Lo,
which also implies uniform convergence in probability from Proposition 2. Here, let Uy (6) and
Upr(0) be the score functions based on log(Ly,(0|Fr)) and log(PL,(0|Fr)). Then, the two esti-
mators éL,n and éme such that L{L(HALW) =0 and UpL(épL,n) = 0 are asymptotically equivalent.
In other words, as At — 0 (as n — 0), éL,n - éme — 0 in probability: this is proved by
contradiction. Now, according to the Slutsky Theorem as in Ferguson (1996), it is enough to
show that the estimator based on L, (6|Fr), éLm, is consistent and converges in law to a normal
distribution around its mean #y. For this part, I apply a modified version of proofs for Theorem
VIL.1.1. and VI.1.2 in Andersen, Borgan, Gill, and Keiding (1992). Due to a Taylor expansion,

1 —dAg(t) = exp(—dAg(t)), UL (F) can be written as

0 log dAg(s)dM(s),

UL(0) = 20

where M (t) = J(t) — fg dAg(s)ds and is a local square integrable martingale. Here, Lenglart’s
inequality is first applied to establish the existence of a consistent estimator that is the solution for

the score function. Next, the Martingale central limit theorem is used to establish the convergence
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of estimators in distribution to normal. Finally, it is obvious that the last result can be obtained
by the delta method.

An alternative to the proof given above is to consider two equivalent probability measures P

and Ppr,. P is the true (latent) data-generating measure for L(|Fr) in continuous time, as in
Definition 2.A and Ppy,, is the observable data-generating measure for PL,,(6|Fr) in discrete time,
as in Definition 2.C. Instead of going through L, (0|Fr), the above weak convergence proof can
be directly applied on Upr,(0) because of the convergence of Ppy, to P, as shown in Proposition

3.

A.7. Equity Price Data Cleaning Procedure

To avoid unnecessary data recording errors, I also preprocess the raw data as follows. All stocks
selected are assured to pass the active trade filter (50 trades per day), which is usual for high
frequency data analysis. For transactions that happen at the same time, I take the first transaction
price recorded in the database. I exclude obvious outliers and all recording errors such as zero
prices. High frequency data may contain bounce-back type data errors caused by extreme round
trips of recorded prices to unreasonably different price levels. If returns from a stock are followed
by returns with opposite signs and similar magnitudes and if the magnitudes of any jumps in the
stock are significantly different from those without the bounce-back effect, I exclude those returns

from consideration.

A.8. Pre-search Procedure for Jump Predictors

I describe a pre-test procedure I employed to determine the most important jump predictors listed
in Table 4. Since the JPT is applied to link the one dimensional time series indicator of jumps

detected from one stock to multiple jump predictors, I initiate my estimation for each firm using
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all the eight predictors described in Section 4 as well as various alternative predictors. Table
A.1 lists all the alternative information variables (along with their data source) I consider for
creating predictors but reject due to their relative lack of significance. These news information
variables are selected to capture real-time information releases regarding the real activity of the
overall economy, inflation, and monetary policy as well as firm-specific fundamental information.
The sample periods for all variables are matched exactly with the sample period for jump data
in Table 2, which is from January 4, 1993 to December 31, 2008.

For each variable, I create the predictors based on a time-series indicator of the information
release times (unless defined otherwise). These predictors are designed to test the impact of
information on stock price jumps over the time horizon, such as 15 minutes, 30 minutes, 60
minutes, 90 minutes, 120 minutes, and 180 minutes, etc., around the information releases. In
addition to these predictors, the terms controlling for the intraday seasonality of jump arrivals
are added in this pre-search.

The jump predictor is selected if it is proven to be broadly significant. In order to measure
the breadth of significance, I obtain the parameter estimates and p-values associated with all
the predictors for each firm. Then, for each predictor, I count the number of firms for which
the predictor is significant at the 5% level. Finally, all the predictors are ranked according to
these number of firms, and the eight predictors are selected according to this ranking. To give
an example using Table 5, X (t), Xa(t), X3(t), X4(t), X7(t) and Xg(t) are significant for 23 out
of 23 firms and they are ranked first to be included in the model. Then, X5(¢) and Xs(t) are
selected as they are significant for 21 firms in the sample. The last two are included subsequently.
Some predictors related to the alternative variables listed in Table A.1 are found to be significant,

but they are not ranked highly enough by the aforementioned measure. They are not as broadly
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significant as the predictors related to variables listed in Table 4, and hence omitted in the model.
The time-of-day variables for times beyond 11:00am and up to 4:00pm are also found to be

insignificant, and hence omitted in the model.
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