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Abstract

Asset prices observed in financial markets combine equilibrium prices and market mi-

crostructure noise. In this paper, we study how to tell apart large shifts in equilibrium prices

from noise using high frequency data. We propose a new nonparametric test which allows

us to asymptotically remove the noise from observable price data and to discover jumps in

fundamental asset values. We provide its asymptotic distribution to decide when such jumps

occur. In finite samples, our test offers reasonable power for distinguishing between noise and

jumps. Empirical evidence indicates that it is necessary to incorporate the presence of jumps

in equilibrium prices.
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1 Introduction

Asset prices observed in financial markets are determined by two important, unobservable compo-

nents. One is equilibrium prices, which reflect demand and supply of assets. These are also called

as efficient prices, incorporating investors’ thoughts on market information. The other is market

microstructure noise induced by the frictions with which actual trades take place. Examples of

such frictions are tick size, discrete observation, bid-ask spread, and other trading mechanics.1

Given that both components are essential ingredients for trading, as indicated in Black (1986),

researchers have sought a better understanding of both components and of their interactions. In

particular, in recent years, with the availability of databases consisting of observations sampled at

ultra-high frequency up to every second, extensive research that takes advantage of such data for

better volatility and noise estimation has appeared, and the economic implications of volatility

and noise have also been investigated in many studies.2

In this paper, we are motivated to question the assumptions imposed by most of the afore-

mentioned studies for log equilibrium prices to follow diffusion processes. Although it is simpler

to study this issue under such assumptions, it is widely known in the asset pricing literature that

financial markets experience jumps in prices that are too large to be explained by pure diffu-

sion processes, and their presence has been incorporated in numerous theoretical and empirical

studies.3 Obviously, one can argue that all the evidence of jumps documented in the previous

asset pricing literature based on discretely sampled data is due to noise and hence, a diffusion

1Other examples include institutional structure, transaction costs, adverse selection due to asymmetric informa-

tion for different traders, trading size, volume, liquidity, and dealer’s inventory control, among others. [See O’Hara

(1995) and Hasbrouck (2004) and the references therein.]
2See Aı̈t-Sahalia, Mykland, and Zhang (2011), Bandi and Russell (2006), Zhang, Mykland, and Ait-Sahalia

(2005), and Hansen and Lunde (2006).
3See Bates (1996), Bakshi, Cao, and Chen (1997), Aı̈t-Sahalia (2002), Andersen, Benzoni, and Lund (2002),

Pan (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker, Johannes, and Polson (2003), and Johannes

(2004).
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assumption for efficient prices would be valid since noise indeed creates discreteness in recorded

prices and it is thus difficult to tell through existing empirical methods if there are fundamental

shifts in underlying asset values.4 Nonetheless, distinguishing efficient price jumps from noise is

important, first because, if there were in fact dramatic changes (jumps) in the fundamental values

of underlying asset prices but these were neglected, as noted in various studies, their implications

for financial management such as pricing and hedging would be significant. Secondly, we believe

that distinguishing jumps in efficient prices from noise and understanding their interactions should

give us a better tool for event studies, which we often employ in empirical investigations of market

trading behavior.

Specifically, we propose a new empirical test that suggests preprocessing price level data for the

purpose of de-noising as well as making a distinction between jumps in efficient prices and noise.

Assuming that noise has an additive effect on equilibrium prices, we first take local averages of

observed prices over an upcoming local window in the preprocessing. This local averaging allows

us to asymptotically remove the noise and approximate the true underlying prices. (The device

has been studied by Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Podolskij and Vetter

(2009) for estimating volatility). Therefore, evidence based on this test becomes about efficient

prices. In order for econometricians to determine the rejection regions for claiming jump arrivals,

we offer a limiting distribution of our test statistics. To execute the test, we need to input the

variance of noise process and the volatility of return process. We suggest a noise variance estimator

that is asymptotically immune to the presence of jumps in efficient prices and dependence in the

noise process, and we use an existing volatility estimator by Podolskij and Vetter (2009) for the

4Many empirical methods for testing jumps in asset prices with high frequency observations do not take into con-

sideration the presence of market microstructure noise. See Barndorff-Nielsen and Shephard (2006), Aı̈t-Sahalia and

Jacod (2009), Mancini (2001), and Lee and Mykland (2008). Andersen, Bollerslev, and Dobrev (2007) considered

a case with i.i.d. noise.
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return process.

Our theory directly extends to (k − 1)-dependent noise. For dependent noise, we suggest

empirically determining the dependence, subsampling every k observations, and then applying

the proposed techniques. Our test is designed to take full advantage of an ultra-high frequency

database. Hence, as long as high frequency price data are available for analysis, they can be used

to determine the behavior of both unobservable price processes and noise processes for any type

of financial assets. In addition, the outcome of our test is robust to model specification because

the suggested procedure is nonparametric.

After presenting asymptotic theories of inference, we discuss finite sample performance using

Monte Carlo simulations. We present the size and power properties of our test and show that

detectable jumps tend to depend on the magnitude of noise variance. When the noise variance level

is high (low), the test tends to detect jumps that are greater (smaller) in size. For a given jump

size, however, we can increase the power of the test by increasing the frequency of observations

over a fixed time interval.

Finally, we apply our new test of jumps in equilibrium prices and estimation procedure for

noise variance to August 2007 IBM stock trade data from the TAQ database. In order for the

asymptotic results of theoretical inference to be most effective in the data analysis, we use all

tick-by-tick data available sampled at the highest frequencies. Noise variance estimates for IBM

trades are around 0.01%-0.03% on average and found to be greater at opening time (09:30-10:00)

on trading days. Based on our new jump test, which takes into account the general form of

dependent noise in the market, we strongly reject the null hypothesis of no jump models for

equilibrium prices, which suggests evidence in favor of equity pricing models with jumps.

The rest of the paper is organized as follows. We start in Section 2 by setting up a theoretical
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framework for equilibrium prices and specify a model of microstructure noise due to market

imperfection. In Section 3, we explain the intuition behind the development of our test and

introduce its definition. In Section 4, we discuss the asymptotic behavior of our test and the

noise variance estimator. Section 5 illustrates the finite sample performance of the noise variance

estimator and of our test under general assumptions on noise. After discussing our empirical

study in Section 6, we conclude in Section 7. All the proofs are in the Appendix.

2 Theoretical Model

This section sets up a theoretical framework to test the presence of jumps in equilibrium prices,

using market price data which include noise from market microstructure. We first fix a complete

probability space (Ω,Ft,P), where Ω is the set of events in a financial market, {Ft : t ∈ [0, T ]}

is right-continuous information filtration for market participants, and P is a data-generating

measure.

We denote as P (t) the unobservable log-equilibrium price at t, in which we test the presence

of jumps. Under the null hypothesis, the continuously compounded return dP (t) is represented

as

dP (t) = σdW (t), (1)

where W (t) is an Ft-adapted standard Brownian Motion, so that the underlying process is an Itô

process that has continuous sample paths. Under the alternative hypothesis with the presence of

jumps, the return is characterized by a jump diffusion process as

dP (t) = σdW (t) + Y (t)dJ(t), (2)

where dJ(t) is a Poisson-type jump process with a stochastic intensity of λ(t) independent ofW (t).

The dJ(t) term is an indicator of jump arrival. This P (t) describes the asset price evolution under

4



a perfectly frictionless market, where there is costless trading or an infinitely liquid market.

For simplicity, we set the drift µ to 0. This dos not affect the generality of our theoretical

asymptotic results, cf. the discussion in Subsection 2.2 (pp. 1407-1409) of Mykland and Zhang

(2009), which in turn builds on Girsanov’s Theorem (see, e.g., Karatzas and Shreve (1991)).5

Econometricians observe market data for the above process through either quoted or transac-

tion prices under market friction due to physical limits on observing data only at discrete times or

to various other types of market noise. The transaction or quote price observed at ti, denoted as

P̃ (ti) in this paper, is determined by the efficient price P (ti) as well as by market microstructure

noise U(ti). As in most of the empirical and theoretical market microstructure literature including

Black (1986) and Stoll (2000), among others, we take a model with additive effect of noise on log

equilibrium prices, so that

P̃ (ti) = P (ti) + U(ti). (3)

Throughout this paper, we impose the following assumptions on observation times, latent price

process, and noise.

Assumption A

A.1: Ultra High Frequency Observation Times

We set the full grids Gn over the fixed time horizon [0, T ]. Each observation time is set as

ti = tn,i and belongs to Gn = {0 = tn,0 < tn,1 < ... < tn,n = T}. The distance between two

successive observations, ∆tn,i = tn,i − tn,i−1, is not necessarily fixed and can change over time

5In addition, from the empirical data analysis standpoint, we note, as in our earlier paper Lee and Mykland

(2008), that estimating µ may introduce additional standard error. This would seem to be corroborated (in a

different setting) by the discussion in Subsection 4.2 (Remark 8 and Figure 1, pp. 1423-1424) of Mykland and

Zhang (2009). We discuss in Appendix a modified statistic in the presence of nonzero drift, with which our main

result continues to hold.
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depending on i. We assume

max
1≤i≤n

|∆tn,i| = Op(n
−β) for some β > 1

2 , (4)

so that the grid becomes dense in [0, T ] as n → ∞. The subscript n is normally suppressed in

our discussion.6 We note that most existing theory assumes that β = 1 (which, in particular, is

what happens in the case of equally spaced data), so this is a substantial weakening of standard

conditions. Our condition also covers observation times tn,i coming from a Poisson process.

A.2: Equilibrium Price Process

Volatility σ is constant over [0, T ]. Jump sizes Y at jump times within [0, T ] are independent

and identically distributed and have mean µy and standard deviation σy.

A.3: Market Microstructure Noise

The noise distribution is stationary and given by

U(ti) ∼D (0, q2), (5)

by which we mean that the noise follows a general process with its mean 0 and standard deviation

q, which is also called market quality parameter or effective spread. We further assume that

E(U(ti)
4) < ∞.

Remark 1. (Dependent noise.) Our theory directly extends to (k − 1)-dependent noise U(ti).

In applications, we suggest empirically determining the dependence k − 1 and collecting every

kth observation to create Gk
n = {0 = tn,0 < tn,k < tn,2k < ...}. This reduces the problem to

independent observations. For this reason, the theoretical results are written as if observations

6We use Op notation throughout this paper to mean that for random vectors {Xn} and non-negative random

variable {dn}, Xn = Op(dn) if for each ϵ > 0, there exists a finite constant Mϵ such that P (|Xn| > Mϵdn) < ϵ

eventually.
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were independent, after subsampling. A slightly more elaborate theory would permit the sampling

of every observation, and the market quality parameter would then take the form

(q′)2 = Var(U(t0)) + 2

k∑
i=1

Cov(U(t0), U(ti)). (6)

Assumption A.1 implies that the distance between two successive observations can be irregular,

which is the usual characteristic of ultra high frequency data, for example, data available in

the TAQ database. Although we take σ as constant in Assumption A.2, most likely a similar

result holds for time-varying σ, and this is certainly the case when the U(ti)’s are normally

distributed. The motivation for imposing Assumption A.3 is to allow a dependent structure for

general noise so that we cover most of the models found in the market microstructure literature.

q in Assumption A.3 describes how noisy the market is. q = 0 is equivalent to a frictionless

market where equilibrium prices P (t) can be observed. Thus, q represents the degree of market

imperfection or the quality of trading exchange. Approximately, if we use a mid-point quote as the

observed price, we can interpret the magnitude of noise as the difference between the mid-point

quote and the corresponding equilibrium price. The justification can also be found in Hasbrouck

(2004) and the references therein.

3 Intuition and Definition of the Test

This section explains the intuition behind the development of our test and its definition. In order

to understand the interaction between jumps in equilibrium prices and microstructure noise, we

first consider the null hypothesis, whereby there is no jump in the equilibrium price process,

as in Equation (1), and we observe its data with noise. Suppose econometricians calculate the

log returns using recorded prices at high frequency. As the distance between two successive

observation time stamps gets smaller (and our observation time becomes closer to continuous
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time: max0≤i≤n |∆tn,i| → 0), the statistics based on these observed log returns will be about

noise, not about the latent price process. This is because noise, for example bid-ask spread, does

not disappear in observed prices even if max0≤i≤n |∆tn,i| → 0. However, the effect of the Brownian

motion process disappears theoretically. In other words, noise plays a dominant role at such high

frequencies.7

Now, how about the alternative hypothesis whereby there are jumps in equilibrium prices as

in Equation (2) and we observe data under the alternative hypothesis with noise? As before,

the effect of the Brownian motion disappears as max0≤i≤n |∆tn,i| → 0. But this time, two kinds

of discreteness remain in the observed returns. One is noise, as explained above, and the other

is jumps in latent equilibrium prices. Even if max0≤i≤n |∆n,i| → 0, neither will disappear both

theoretically and empirically. This is where the distinction becomes problematic because when

we have very large changes in observed prices, this could be due to noise or to jumps in efficient

prices.

In order to tell jumps in equilibrium prices from noise, we suggest preprocessing the raw

price level data. Instead of using observed prices directly for return calculation, we first average

observed prices over an upcoming block of size M . This technique of averaging observed prices

with an appropriate M allows us to asymptotically remove the noise from the price data which

are contaminated by the noise and to extract the level of equilibrium prices. These price levels

preprocessed from nonoverlapping blocks are used in our test statistics to determine the presence

of jumps.8 Formally, we write the preprocessing procedure and the test statistic for jumps in

7This is noted in Zhang, Mykland, and Ait-Sahalia (2005) and Bandi and Russell (2006), suggesting not using

most frequently observed returns but using less frequently observed returns in order to make a better volatility σ(t)

estimation. These studies also offer optimal sampling frequency for sample selection. However, they assume that

there is no jump in equilibrium prices.
8This pre-averaging technique has been proposed for volatility estimation for diffusion processes in the presence

of noise. [See Jacod, Li, Mykland, Podolskij, and Vetter (2009) and the references therein.]
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equilibrium prices as in Definition 1.

Definition 1. Let M = Mn be the block size such that

M ∼ C⌊n/k⌋
1
2 (7)

as n → ∞. The preprocessed price for de-noising, P̂ (tj), is the averaged log price over the

block of size M such that P̂ (tj) =
1
M

∑⌊j/k⌋+M−1
i=⌊j/k⌋ P̃ (tik), where P̃ (tik) is the log price data from

Gk
n, subsampled due to the (k-1)-dependent noise. Then, we again sample P̂ (tj)’s at every M

observations from Gk
n. The grid for this subsample is set as GkM

n = {tn,0 < tn,kM < tn,2kM <

...} = {t0 < tkM < t2kM < ...} ⊂ Gn. To test the presence of jumps in equilibrium price between

tj+kM to tj, the statistic L(tj) is defined as

L(tj) ≡ P̂ (tj+kM )− P̂ (tj) (8)

with the observation time tj ∈ GkM
n for all j.

4 Theory of Inference for Equilibrium Price with Noise

In this section, we study inference theory. Results are discussed with a fixed market quality

parameter q and volatility σ of asset returns. We carry out our formal study with this simplified

assumption on noise and volatility as a first step to theoretically refine our understanding. In

Section 5, we ensure that the results hold in more realistic conditions such as time-varying noise

or stochastic volatility through simulation studies.
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4.1 Asymptotic Behavior of the Test

In this subsection, we discuss the asymptotic behavior of our test statistic and how to set up the

rejection region to detect jumps in equilibrium prices.

In order to simplify our discussion, we standardize the test statistic L(tj). Notice that

under our assumptions, the expected value of L(tj), E[L(tj)] = 0, and its scaled variance

Vn = Var[
√
ML(tj)] has its limit

plimn→∞Vn =
2

3
σ2C2T + 2q2, (9)

where C is as in Definition 1. Here, we obtain the following lemma for the standardized test

statistic X (tj).

Lemma 1. Under Assumptions A.1-A.3 and Equations (7-8), also suppose that there is no jump

in efficient prices under the null hypothesis, as in Equation (1). For any given tj ∈ GkM
n , we set

X (tj) =

√
M√
Vn

L(tj), (10)

where Vn = Var[
√
ML(tj)]. Then, as n → ∞,

X (tj)
D−→ N (0, 1), (11)

where N (0, 1) denotes a standard normal random variable.

The above lemma states that the differences in averaged log prices become Gaussian in the

limit.9 Given this important result, we study in Theorem 1 below the distribution of the maxi-

9Notice that the numerator of this test statistic is the difference in averaged log prices, which is a crucial

component in distinguishing jumps in equilibrium prices from noise. As we discussed earlier, the difficulty in this

distinction comes from the fact that jumps and noise have the same asymptotic order. In that sense, the design

of our test is better than that of Bos, Janus, and Koopman (2009), who used the observed log return (without

de-noising) in their jump test statistic.
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mums of |X (tj)| to determine the rejection region of our test.

Theorem 1. Under Assumptions A.1-A.3 and Equations (7-10), also suppose that there is no

jump in efficient prices under the null hypothesis, as in Equation (1). Then, as n → ∞,

maxtj∈GkM
n

|X (tj)| −An

Bn

D−→ ξ, (12)

where ξ follows a standard Gumbel distribution whose cumulative distribution function P (ξ ≤

x) = exp(−e−x)10,

An = (2 log⌊ n

kM
⌋)1/2 −

log π + log(log⌊ n
kM ⌋)

2(2 log⌊ n
kM ⌋)1/2

, and Bn =
1

(2 log⌊ n
kM ⌋)1/2

. (13)

Therefore, as n → ∞,

ξ̂n = B−1
n

(√
M√
Vn

max
tj∈GkM

n

|L(tj)| −An

)
D−→ ξ, (14)

where ξ is as in Equation (12) and An and Bn are as in Equation (13).

Specifically, the above main theorem implies that in the presence of noise, one can find max-

imum of the absolute differences in averaged log prices (i.e., maximum among |L(tj)|’s with

tj ∈ GkM
n ) and use the Gumbel distribution to select the rejection region for the maximum.11 For

example, if we set the significance level at 1%, then the threshold for rejecting the null hypothesis

using ξn can be found from the 99th percentile of the standard Gumbel distribution. Now, we

study in Theorem 2 below how this test would react to jumps in equilibrium prices.

10This standard Gumbel distribution has its probability density function P (ξ = x) = e−x exp(−e−x) with the

mean Euler-Mascheroni constant approximately 0.577 and standard deviation π/
√
6 ≈ 1.2825.

11A similar lemma was used in Lee and Mykland (2008), which does not take the presence of noise into account

for their jump detection.
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Theorem 2. Under Assumptions A.1-A.3 and Equations (7-10), also suppose that there can be

jumps in efficient prices under the alternative hypothesis, as in Equation (2). If there are F jumps

at times τf ∈ [0, T ] for a finite F , then,

max
tj∈GkM

n

|L(tj)| = max
1≤f≤F

|Y (τf )|+ op(1), (15)

where Y (τf ) is the equilibrium price jump size at jump time τf .

As stated in Theorem 2, under the alternative hypothesis, the test statistic would be close to the

maximum jump size over the interval within which we would like to test the jumps in equilibrium

prices. Notice that, by Lemma 1, each quantity defined in Equation (8) converges to zero under

the null hypothesis of no jump. Furthermore, maxtj∈GkM
n

|L(tj)| = Op(An/
√
M) also converges to

zero under the null hypothesis. Therefore, this test will detect the presence of jumps (which can

be single or multiple) in the interval under consideration.

4.2 Consistent Estimation of Noise Variance in the Presence of Jumps

As can be noticed in Theorem 1, in order to apply our test, we need a consistent estimator for Vn,

V̂n. Based on Equation (9), we suggest using V̂n = 2
3 σ̂

2C2T + 2q̂2, where σ̂ and q̂ are consistent

estimators for volatility σ and noise variance q, respectively. For σ̂, we suggest using the estimator

proposed by Podolskij and Vetter (2009), who proposed a volatility estimator that is robust to

the presence of jumps and noise.12 For estimating noise variance q, we suggest in the following

proposition a new estimator that takes into account the dependent noise, which can be used

regardless of the presence of jumps in efficient prices.

12See Subsection 3.1.2 of Podolskij and Vetter (2009) for details. We use this robust estimator because the

observed data could be contaminated by noise and the efficient prices could experience jumps. Regardless of their

presence, volatility σ should be consistently estimated.
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Proposition 1. Suppose that the noise follows a (k-1)-dependent process with 1 ≤ k < ∞. Its

variance estimator over the interval [0, T ], Q̂(k), is defined as

Q̂(k) ≡

(
1

n′

n′∑
m=1

(P̃ (tm)− P̃ (tm+k))
2

)1/2

, with n′ = n− k (16)

Then, regardless of the presence of jumps, as maxi |∆ti| goes to 0,

Q̂(k)
P−→

√
2q. (17)

Therefore, q can be consistently estimated by q̂ = Q̂(k)/
√
2.

Under both hypotheses on the presence of jumps, this realized power variation estimator does

not converge in probability to the integrated variance of returns from efficient prices. Rather, it

converges to a quantity that explains variance in noise.

As can be seen, our analysis depends on the order of noise dependence k, which is not ob-

servable and unknown in practice. The k can be estimated in the following way. Assuming that

observed log returns sampled at the highest frequency give us information about noise, we sug-

gest calculating their serial correlation function and determine the number of dependence lags by

applying the usual significance test for this autocorrelation. Our simulation study presented in

Section 5 indicates that this method of k selection works well in the presence of jumps. In prac-

tice, since the noise distribution is not known, we suggest in this paper using this noise variance

estimator, which does not impose any assumption on its distribution and with which the test

works reasonably well in finite samples. See Section 5 for a more detailed illustration of its finite

sample performance.

13



5 Simulation for Finite Sample Behavior

Our asymptotic arguments require infinite sampling, which is not completely achieved in practice,

though enough high frequency data are available due to recent advances in information technology.

In this section, we examine by Monte Carlo simulation the finite sample performance of our test

in terms of both size and power of the test. As shown, overall simulation results support our

inference theory presented in Section 4. We also suggest optimal block sizes M for pre-averaging,

depending on noise variance parameters. As also noted earlier, although our theory is developed

with constant volatility σ, we consider general scenarios with time-varying noise and stochastic

volatility in finite samples to ensure that our results hold under more realistic market conditions.

For generating equilibrium prices, we consider jump diffusion models, as in Equation (2), with

both constant and stochastic volatility. For constant volatility, we set σ = 30% per year, which is

usual for the U.S. equity markets. For stochastic volatility, we assume the Heston (1993) model,

specified as

dσ2(t) = κ
(
ς̄ − σ2(t)

)
dt+ ωσ(t)dB(t), (18)

where B(t) denotes a Brownian Motion. For κ, ς̄, and ω, we used the parameter estimates from

equity markets reported by Li, Wells, and Yu (2008), Table 4: κ = 0.0162, ς̄ = 0.8465, and

ω = 0.1170.13

Here, we discuss specifications for noise processes. For independent noise, we simply generate

U(ti) from a normal distribution, N (0, q2). However, as discussed in Engle and Sun (2006), a

more realistic noise model should incorporate its various characteristics such as stationarity and

crosscorrelation between noise and equilibrium prices. Because the information flow affects both

13For all series generation, we used the Euler-Maruyama Stochastic Differential Equation (SDE) discretization

scheme in Kloeden and Platen (1992), an explicit order 0.5 strong and order 1.0 weak scheme. We discard the

burn-in period – the first part of the whole series – to avoid the starting value effect every time we generate each

series.
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components of transactions, for example, it is likely that market microstructure noise is corre-

lated with equilibrium price changes. Price determination by adverse selection under asymmetric

information can also create various type of noise dependence [see O’Hara (1995)].

In order to incorporate such general properties of dependent noise, we use the general noise

model employed by Engle and Sun (2006). We use their parameter estimates for an individual

U.S. stock reported as significant at 5%. Specifically, the cross-correlated model we employ for

our simulation, relating current and lagged innovation in equilibrium prices to noise, is

U(ti) = θ0

∫ ti

ti−1

σ(t)dW (s) + θ1

∫ ti

ti−2

σ(t)dW (s) +X(ti), (19)

where X(ti) is a normal random variable with standard deviation q, and θ0 and θ1 are set at 0.0861

and 0.06, respectively.14 Though Engle and Sun (2006) also have estimates for q, we consider q at

three different levels in order to see the impact of noise magnitude on the performance of our test.

These q’s are chosen around the estimates reported by Aı̈t-Sahalia, Mykland, and Zhang (2005)

and Bandi and Russell (2006). In particular, we set the market quality parameter q at different

levels such as q = 0.01%, 0.05%, and 0.1%. To study finite sample properties in the following

subsections, we add these two types of noise under both the null and the alternative hypotheses

for efficient prices P (ti), as in Equation (3).

5.1 Performance of the Noise Variance Estimator

We now study the performance of our newly proposed noise variance estimator. As a nonpara-

metric estimator for noise variance, quadratic variation has been suggested in Zhang, Mykland,

and Ait-Sahalia (2005) and Bandi and Russell (2006), among others, assuming that there is no

jump in efficient price processes. In theory, this estimator can also be used in the presence of

14We also consider a non-normal dependent noise model using a uniform distribution with standard deviation q,

and obtain similar results. We omit reporting the results in order to save space.
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finitely many jumps in efficient prices and general dependent noise. In this subsection, we study

by simulation how the quadratic variation (QV) as a noise variance estimator performs in finite

samples.

We simulate 6,000 series of efficient prices from a jump diffusion process over a day with five-

second frequency for Table 1. The jump intensity is set at 5% per year, and we consider cases

with no jump as well as jumps with three jump size standard deviations σy at one, two, and three

times σ. U(ti) is assumed, as discussed earlier. The order of noise dependence is unknown in

practice. We calculate the serial correlation of noise and select the number of dependence lags.

We apply the usual significance test at the significance level of 5% for this autocorrelation.

Table 1 explicitly shows numerical values for the Mean Squared Errors (MSEs) of the noise

variance (q) estimator. As can be seen in the table, the method for selecting order of noise

dependence works well in the presence of jumps, although it tends to over/underestimate the

order in the absence of jumps. This bias in the order does not seriously influence the performance

of the noise variance estimator, as can be seen in the table. As expected, we find that as the jump

sizes becomes greater, the MSEs of this estimator increases.

5.2 Size and Power of the Test

To investigate the size of the new test, we generate the equilibrium prices from a diffusion process

dP (t) = σ(t)dW (t). n is the number of observations over one trading hour. In this study, the

numbers of observations are chosen at n = 1200, 1800, and 3600, which is equivalent to sample

observations at every 3-second, 2-second, and 1-second intervals. The number of simulations is

6,000. In order to examine the power of the test, the equilibrium prices are generated from a

jump diffusion process dP (t) = σ(t)dW (t) + Y (t)dJ(t) with a standard deviation σy of jump size

distribution. Significance level α used for detection is 5%.
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We report the probability of rejecting the null hypothesis of no jump in price processes.

Tables 2 and 3 include both size (under σy = 0) and power (under σy ̸= 0) when the volatility

is constant at 30% and stochastic, respectively. In applications using ultra high frequency data,

it is important to check first whether any test detects the presence of jumps spuriously and does

not detect microstructure noise as jumps, because as explained in our introduction and in the

intuition behind our test, asymptotically, both noise and jumps can be regarded similarly. The

results show appropriate size properties (presented in the columns under σy = 0) and does not

present spurious detection problems.

The overall results regarding the power of the test (presented in the columns under σy ̸= 0)

indicate that detectable jumps in equilibrium prices depend on noise level. If the magnitude of

noise is greater, detectable jump sizes in equilibrium prices are greater, and hence, the power for

small sized jumps decreases. Our test is designed to be robust to dependence of noise and we prove

its robustness in the finite sample performance. In particular, the dependence does not change

the power of our test significantly.15 We also find that increasing frequency helps to improve the

performance of the test.

5.3 Comparison with Lee and Mykland (2008) in the Presence of Noise

In this subsection, we discuss the impact of noise on the jump test by Lee and Mykland (2008)

that is not devised to be robust to noise and compare its performance with that of the new test

proposed in this paper. In order to avoid any distortion in the analysis due to the presence of

noise, it was suggested in that study using data sampled sparsely, for example, sampling data

every 15 minutes or 30 minutes. Here, we consider what will happen to the test if we use it using

data collected extremely frequently up to 1 second.

15We find similar results under independent noise but omit reporting the results in order to save space.

17



If data are sampled too frequently, their jump robust volatility estimator (based on the scaled

bipower variation) that Lee and Mykland (2008) used in the denominator of their test, will no

longer estimate the instantaneous volatility but rather estimate the noise variance (after scaling).

Therefore, when there are small jumps in efficient prices relative to large noise at a particular

time, the test will not be able to detect those small jumps. In other words, the detection power for

the smaller jumps will be reduced if the noise level is relatively large. However, if the noise level

is small, the presence of noise will not play a critical role. This evidence is illustrated in Table 4,

which includes results from a simulation study comparing the performance of the two tests in the

presence of noise. For this study, we consider a general simulation setup with stochastic volatility

and dependent noise models, as before. The specific details for the simulation design can also be

found in the table note.

This comparison study suggests that when the noise variance level is large but jump sizes are

small, our new test, which takes into account the presence of noise, outperforms the jump test by

Lee and Mykland (2008) in general. However, if the noise variance level is small, we find that the

marginal benefit of devising the test to be robust to noise tends to decrease.

5.4 Block Size M Selection for Local Pre-averaging

One important tuning parameter for practical applications of this test is a block size M , the

number of prices to be averaged to denoise the observed prices. As is common in nonparametric

inference methods, our test is also sensitive to this choice. In theory, it needs to satisfy the

condition stated in Equation (7), that is, M ∼ C⌊n/k⌋1/2. One way to choose this block size is

to find an optimal constant C that satisfies this. This optimal constant can be easily searched

by simulation, which can also ensure the proper finite sample performance of our test. For users’
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convenience, we list in Table 5 various possible q values and optimal C depending on q. This

M does depend on q but not much on the dependence of the noise process. Therefore, the C

term listed in the table can be used regardless of the dependence in noise. In general, when q is

greater, we need larger block sizes for pre-averaging. This is natural because of the purpose of

pre-averaging, which is to denoise the observed prices. Since we do not know q in practice, we

should first estimate q using the estimator in Proposition 1 and determine C according to Table

5. We use this rule for our simulation and empirical analysis throughout this paper.

6 Empirical Analysis for IBM Stock Trades

We apply our new procedures to observed price data from actual stock trades. In order to make our

asymptotic results most effective in any data analysis, it is best to use all tick-by-tick transaction

data sampled at the highest frequency.

6.1 Data

Data are collected from the TAQ database, and we only consider transactions on the New York

Stock Exchange (NYSE) to be consistent in terms of trading mechanisms for all trades under

investigation. The sample period is August 2007. Due to interrupted trading in the NYSE

overnight, all trades before 9:30am or after 4:00pm are discarded. We also exclude the first trade

after 9:30am for each trading day, which is the usual way of avoiding the overnight effect [see

Engle and Sun (2006), for example]. For trades that take place at the same time and hence

have multiple prices at any given time, we take the averaged observed price, which removes all

transactions with zero duration. We discard all recording errors such as zero prices (if any). In

order to eliminate bounce-back type data errors as noted in Aı̈t-Sahalia, Mykland, and Zhang
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(2011), we remove obvious outliers and only keep data with log returns within the range of 7

standard deviations around its mean. The total number of tick-by-tick observations used in our

analysis is 167,595.

In Table 6, we include summary statistics for the number of trades, durations ∆ti in seconds,

log returns ∆ log P̃ (ti) in basis points, and observed prices P̃ (ti) in dollar terms. We have 23

trading days for August 2007 and 6.5 trading hours for each trading day. We take the time

horizon for each test, T , to be one hour after 10:00am till 4:00pm and 30 minutes for opening

half hours from 9:30am till 10:00am each day. Columns in Table 6, for example 11-12, include

information about trades after 11am (inclusive) and before 12pm (exclusive). Though there is

seasonality in the number of trades, we have a high enough number of trades within all horizons

for our asymptotic results to be effective. Durations between two consecutive trades ∆ti have

averages below 5 seconds. ∆ log P̃ (ti) is the first difference in observed log prices sampled at the

highest frequencies available.

6.2 Empirical Results

We first discuss the estimated market quality parameter q, which is the standard deviation of the

market microstructure noise process in Equation (5). In order to determine (k − 1) for the serial

dependence of noise, we calculate the autocorrelation of the observed log returns at the highest

frequency for every horizon and apply the usual significance test at 5%, as in Figure 1, to determine

the number of dependent lags. Figure 1 shows one representative sample autocorrelation function

of the most frequently sampled log returns on August 1, 2007. The two solid horizontal lines in

the graph for lags of 2 and beyond make the 95% confidence band. If the dot is inside the band, it

means that the corresponding lag is not significant. We apply this rule for determining the order

of dependence at each time of testing.
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Using (k − 1)’s selected according to the aforementioned rule, we subsample every kth ob-

servation, estimate the noise variances using Equation (16), and report its summary statistics in

the upper panel of Table 7. Results indicate that q̂’s are greater in the opening hours such as

9:30-10:00, though the magnitudes are similar in other hours. We also calculate ξ̂n according to

Equation (14) and present its summary statistics in the lower panel of Table 7. Overall results

suggest that models without jumps in equilibrium prices are rejected for IBM equity markets.

Note that our overall sample period is 1 month and includes multiple fixed time intervals of

1 hour or 30 minutes. We split usual daily NYSE trading hours from 9:30am to 4:00pm into 7

different fixed time intervals and apply our test multiple times for the presence of jumps in each

fixed time interval according to our test statistic ξ̂n. Since the total number of trading days in

August 2007 was 23, we apply our test 161 times. Because of this large number of tests, it is

desirable to make a multiple testing adjustment to control for the overall significance level of our

analysis. In this paper, we apply the step-down procedure for this purpose, as follows.16

In general multiple hypothesis testing, it can be assumed that there are h fixed intervals with

length T during our sample period, and we perform tests to determine the presence of jumps

in each fixed interval. The null hypotheses for these multiple tests can be written as H1,H2, ..,

and Hh. In our analysis, these null hypotheses are the same as those set in Equation (1). We

compute realized test statistics ξ̂1,n, ξ̂2,n, ..., ξ̂h,n and their associated p-values p1, p2, ..., ph based

on the standard Gumbel distribution, as stated in Theorem 1. Then, we sort the associated

p-values and let O(1), O(2), ..., O(h) be the indices of the ordered p-values, such that pO(1) ≤

pO(2) ≤ ... ≤ pO(h). If the overall error rate for our equilibrium jump tests is α′, we can reject

all hypotheses HO(h∗) whose multiple-test adjusted p-values p̃O(h∗) satisfy the condition p̃O(h∗) =

16We thank a referee for suggesting this approach in this context. Alternatives to the step-down procedure for

controlling the overall error rate are the Bonferroni adjustment or incorporating False Discovery Rates.
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maxj≤h∗{(h− j + 1) pO(j)} ≤ α′. We used this approach to estimate jump intensity. In particular,

we count during how many time intervals we reject the individual null hypotheses using this

adjusted p-values. We find that with a 1% (5%) overall error rate, the efficient price jump

intensity for IBM stocks is estimated at 3.11% (7.45%) during our sample period.

In Figure 2, we graph the empirical distribution of IBM noise variance estimate q̂’s. For each

trading day, we have 7 different time horizons, and we obtain the noise variance by separately

estimating the quantities over different time horizons. Different colors for each bin in Figure 2

indicate different trading hours. Specifically, dark blue, regular blue, light blue, green, yellow,

orange, and red represent trading hours 09:30-10, 10-11, 11-12, 12-13, 13-14, 14-15, and 15-16,

respectively. As also reported in Table 7, estimates of q̂ are centered around 0.01%-0.02%. Figure

2 graphically shows that the noise level tends to be greater in the 9:30-10 interval (the dark blue

bars) than in the other trading hours.

Finally, in Figure 3, we compare graphically the asymptotic distribution of ξ and the empirical

distribution of ξ̂n based on our data. The asymptotic distribution is graphed with simulated data

under the null hypothesis of no jump in equilibrium prices according to Equation (14) in Theorem

1. The left panel in Figure 3 includes the histogram of simulated ξ, which we would expect to

see from data when there is no jump in equilibrium prices. The number of simulations is 6,000.

The right panel includes the histogram of ξ̂n using our sample. As can be seen, we have different

ranges in the distribution, which indicates the rejection of models with no jump in equilibrium

prices. Therefore, we can conclude from this case study that models with jumps in efficient prices

can better capture the intra-day dynamics of IBM stock price behavior.
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7 Conclusion

Despite the empirical evidence of jumps documented in the asset pricing literature and the popu-

larity of jump diffusion models to accommodate such evidence, the empirical market microstruc-

ture literature often ignores their presence in studies using high frequency data. This may be due

to the difficulty of distinguishing between two unobservable components of observable data: noise

and jumps in efficient prices. In this paper, we contribute to the literature by proposing new

empirical methods which allow us to find evidence of jumps in underlying efficient price processes.

These methods are immune to the presence of general noise and offer new empirical evidence.

The approach suggested in this study is expected to be useful in various contexts such as event

studies and arbitrage trading strategies as well as portfolio and risk management, among others.

Since we designed this test to take full advantage of ultra high frequency price data, the

test can be applied to all sorts of price level data for local averaging as long as high frequency

observations are available, so that our asymptotic arguments with a large number of observations

in fixed time intervals are valid in the application. We suggest nonparametric methods, which

would give evidence robust to model specification. It is important to note that we can investigate

the equilibrium price jumps in the presence of general dependent noise processes, which is a crucial

feature of noise patterns in financial markets. This general assumption on dependence in noise

processes distinguishes our test from existing jump tests.

Through a simulation study, we show that our test has reasonable finite sample properties as

long as block size for preprocessing is appropriately chosen. Our empirical study using IBM stock

trades on the New York Stock Exchange indicates that there is a strong need to incorporate the

presence of jumps in underlying pricing models.

Finally, in this paper, we only study how to identify jumps with finite activity in the presence
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of noise using high frequency data. It would be interesting to investigate the case of Lévy type

jumps with infinite activity to determine whether evidence of Lévy jumps is due to the presence

of noise or not.
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8 Appendix

8.1 The Nonzero Drift

Our theoretical results are not affected by the nonzero drift. We provide a modified version of

X (tj) with the nonzero drift as follows: For any given tj ∈ GkM
n , we can define a modified test by

X̃ (tj) =
√
M√
Vn

(L(tj)− µ̂L), where µ̂L = 1
⌊ n
kM

⌋
∑

tj∈GkM
n

L(tj) and Vn is estimated as discussed in

Subsection 4.2. This definition demeans L(tj) at time tj ∈ GkM
n using its averaged value, assuming

that the nonzero drift is constant. We note that µ̂L = Op((
n

kM )−1/2), as n → ∞. In the presence

of the Poisson-type jumps we consider in this paper, the impact of jumps on the drift estimation

becomes negligible as n → ∞, because of the property of Poisson processes that there can be only

finitely many jumps.

8.2 Proof of Theorem 1

We use the following Lemma 2, the proof of which can be found in Berman (1964) under the

general asymptotic mixing condition as stated. The result is also mentioned in Ljung (1993).

Lemma 2. Let Z(j) be a stationary Gaussian process, so that EZ(j) = 0 and EZ2(j) = 1 for

all j = 0, 1, .., n. Furthermore, its covariance sequence ρk = EZ(0)Z(k) with
∑∞

k=1 ρ
2
k < ∞, or

limk→∞ ρk log k = 0. Then, as n → ∞,

maxj |Z(j)| −An

Bn

D−→ ξ, (20)

where ξ follows a standard Gumbel distribution, An and Bn are An = (2 log n)1/2 − log π+log(log n)

2(2 log n)1/2

and Bn = 1
(2 logn)1/2

.

We apply Lemma 2 to our situation in Theorem 1. Notice that for all tj ∈ GkM
n , L(tj) =

P̂ (tj+kM ) − P̂ (tj) =
1
M

∑⌊j/k⌋+M−1
i=⌊j/k⌋ [P (t(i+M)k) − P (tik)] +

1
M

∑⌊j/k⌋+M−1
i=⌊j/k⌋ [U(t(i+M)k) − U(tik)].
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For the signal averages, we have approximation of P (t(i+M)k) − P (tik) by a normal random

variable. For the noise averages, we note from Theorem 3 in Mykland and Zhang (2011) that

1
M

∑⌊j/k⌋+M−1
i=⌊j/k⌋ [U(t(i+M)k)− U(tik)] satisfies the extra condition (i.e., Gaussianity) under a con-

tiguous measure Pn. The likelihood ratio dP/dPn can asymptotically be expressed in terms of a

polynomial sum of terms of the form
∑⌊j/k⌋+M−1

i=⌊j/k⌋ U(tik). The maximum of |X (tj)| is taken over

tj ∈ GkM
n and (under Pn) asymptotically independent of dP/dPn. This proves Theorem 1.

8.3 Proof of Theorem 2

Under the alternative hypothesis when the jump times are τf ∈ [0, T ], we have

max
tj∈GkM

n

L(tj)|alternative = max
tj∈GkM

n

|P̂ (tj+kM )− P̂ (tj)|

= max
tj∈GkM

n

| 1
M

⌊j/k⌋+M−1∑
i=⌊j/k⌋

∫ t(i+M)k

tik

Y (s)dJ(s)|+ op(1)

= max
tj∈GkM

n ,1≤f≤F
|Y (τf )| ×

Number of times(tik ∈ (tj , tj+kM−1), tik ≤ τf )

M
= max

1≤f≤F
|Y (τf )|+ op(1).

(21)

8.4 Proof of Proposition 1 under the null

Denote ui and u as random variables with a mean of 0 and a variance of 1 along with ni being a

standard normal random variable. Using P (tm)− P (tm+k) = σ
√
k∆tni and

U(tm)− U(tm+k) = q (um − um+k) ,

plimn→∞Q̂2(k) = plimn→∞

(
1

n′

n′∑
m=1

(P̃ (tm)− P̃ (tm+k))
2

)

= plimn→∞

(
1

n′

n′∑
m=1

(P (tm)− P (tm+k) + U(tm)− U(tm+k))
2

)

= plimn→∞

(
1

n′

n′∑
m=1

(σ
√
k∆tni + q (um − um+k))

2

)
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= q2E (um − um+k)
2 = q2E(

√
2u)2 = (

√
2q)2

8.5 Proof of Proposition 1 under the alternative

We assume there are F numbers of rare Poisson jumps in the efficient price process with F being

finite over any fixed time horizon. The presence of jumps now comes into our efficient prices as

P (tm)− P (tm+k) = σ
√
k∆tnm +Op(1)Iτ∈[tm,tm+k], where τ is the jump arrival time. Then,

plimn→∞Q̂2(k) = plimn→∞

(
1

n′

n′∑
m=1

(P̃ (tm)− P̃ (tm+k))
2

)

= plimn→∞
1

n′

n′∑
m=1

(Op(1)Iτ + q (um − um+k) |)2

= plimn→∞
1

n′

∑
with jump

(Op(1)Iτ + q (um − um+k))
2

︸ ︷︷ ︸
= F

n′Op(1)→0 as n→∞

+plimn→∞
1

n′

∑
without jump

(q (um − um+k))
2

= q2E((um − um+k))
2 = q2E(

√
2u)2 = (

√
2q)2.
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Figure legends

Figure 1: Sample Autocorrelation of IBM Stock Returns during August 2007

The figure includes a representative sample autocorrelation function of returns from IBM stocks

traded on the New York Stock Exchange (NYSE). This graph is for August 1, 2007, and we have

qualitatively similar figures for other days and hours during the whole month of August 2007. We

calculate this sample autocorrelation of returns sampled at the highest frequency and employ the

significant lag number for k in our analysis. The two solid horizontal lines in this graph for the

lags of 2 and beyond make the 95% confidence band. If the dot is inside the band, this means

that the corresponding lag is not significant.

Figure 2: Empirical Distribution of Hourly q for IBM Trades during August 2007

This figure includes histograms of hourly q estimates. For every horizon, we calculate the sample

autocorrelation to determine lag k in Equation (16), using tick-by-tick data. We use IBM stock

data during August 2007, and the total number of tick-by-tick observations used is 167,595. Data

are collected from the TAQ database and from transactions on the New York Stock Exchange

(NYSE). All trades before 9:30am or after 4pm and the first trade after 9:30am are discarded

due to NYSE trading hours and mechanisms. Different colors for each bin indicate different

trading hours. Dark blue, regular blue, light blue, green, yellow, orange, and red represent

trading hours 09:30-10, 10-11, 11-12, 12-13, 13-14, 14-15, and 15-16, respectively. Each trading

hour, for example 11-12, includes information about trades after 11am (inclusive) and before

12pm (exclusive). Trades that have multiple prices at the same time are counted once, and the

averaged price over the multiple trades is used for this analysis.

Figure 3: Comparison of Limiting and Empirical Distributions

The left panel includes the histogram of simulated Gumbel variables ξ, which is expected under
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the null hypothesis of no jumps in equilibrium prices. The number of simulations is 6,000. The

right panel includes the histogram of ξ̂n for IBM stock trades during August 2007. The summary

statistics for the distribution of ξ̂n are listed in Table 7. The total number of tick-by-tick observa-

tions used is 167,595. Descriptions of data such as time horizon T used, number of observations

n during [0, T ], durations ∆ti over each hour, and price P̃ (ti) and log return ∆ log P̃ (ti) levels are

reported in Table 6. Data are collected from the TAQ database and from transactions on the New

York Stock Exchange (NYSE). All trades before 9:30am or after 4pm and the first trade after

9:30am are discarded due to NYSE trading hours and mechanisms. Trades that have multiple

prices at the same time are counted once, and the averaged price over the multiple trades is used.
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Figure 1: Sample Autocorrelation of IBM Stock Returns during August 2007
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Figure 2: Empirical Distribution of Hourly q for IBM Trades during August 2007
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Figure 3: Comparison of Limiting and Empirical Distributions
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Table 1: Performance of the Noise Variance (q)

Estimator†

σy 0 1× σ(t) 2× σ(t) 3× σ(t)

Constant volatility and independent noise with k = 1

MSE 6.2026e-009 2.1191e-004 0.0034 0.0169

Ave k̂ 2.1000 1.0500 1.0600 1.0300

Stochastic volatility and independent noise with k = 1

MSE 6.1746e-009 2.1254e-004 0.0035 0.0167

Ave k̂ 2.0100 1.0400 1.0500 1.0400

Constant volatility and dependent noise with k = 3

MSE 9.8161e-009 7.0682e-004 0.0110 0.0566

Ave k̂ 2.4500 3.0100 3.000 2.9800

Stochastic volatility and dependent noise with k = 3

MSE 1.0432e-008 6.9473e-004 0.0115 0.0544

Ave k̂ 2.5400 3.0100 3.000 2.9900

† This table presents the performance of the noise variance q estimators

in terms of Mean Squared Errors (MSEs). Assuming that noise can

follow a general dependent process, the estimator based on quadratic

variation (QV) as defined in Proposition 1 is used for this table. The

simulation design for generating efficient prices and noise processes can

be found in Section 5. We report the results depending on k̂, which also

has to be selected in each simulation run. The procedure for selecting

the order of dependence k is described in Section 5. k = 1 represents

the independent noise and k > 1 represents the dependent noise. The

averages of estimated parameter k̂ for k are presented. The number

of simulations is 6,000. Four different levels of jump sizes relative to

volatility level are considered. σy = 0 represents the case without

jumps.
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Table 2: Size and Power of the Test under Constant Volatility†

Market quality parameter (q = 0.01%)

Frequency (nobs) σy = 0 σy = 0.15% σy = 0.30% σy = 0.45%

3 second (1200) 0.043 0.990 0.999 1.000

2 second (1800) 0.039 1.000 1.000 1.000

1 second (3600) 0.039 1.000 1.000 1.000

Market quality parameter (q = 0.05%)

Frequency (nobs) σy = 0 σy = 0.15% σy = 0.30% σy = 0.45%

3 second (1200) 0.032 0.770 0.999 1.000

2 second (1800) 0.043 0.900 1.000 1.000

1 second (3600) 0.044 0.989 1.000 1.000

Market quality parameter (q = 0.1%)

Frequency (nobs) σy = 0 σy = 0.15% σy = 0.30% σy = 0.45%

3 second (1200) 0.036 0.210 0.869 0.997

2 second (1800) 0.043 0.289 0.960 0.999

1 second (3600) 0.066 0.891 1.000 1.000

† This table reports performance (size (under σy = 0) and power (under σy ̸= 0)) of our

test for jumps in equilibrium prices in the presence of noise. The equilibrium prices are

generated from a jump diffusion process dP (t) = σ(t)dW (t)+Y (t)dJ(t) with a constant

volatility level σ(t) = σ = 30%. The test is based on the observed data contaminated

by noise U(ti) generated from the dependent noise model studied by Engle and Sun

(2006). We use their parameter estimates reported as significant at 5%. In particular,

we simulate noise series from U(ti) = θ0
∫ ti
ti−1

σdW (s)+θ1
∫ ti
ti−2

σdW (s)+X(ti), where

X(ti) is a normal variable with mean 0 and variance q2, and θ0 and θ1 are set at their

estimates, which are 0.0861 and 0.06, respectively. The market quality parameter q’s

are chosen at various levels around values shown in our empirical studies as well as

Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell (2006). The number

of simulations is 6,000. σy in the table denotes the standard deviation of the jump

size distribution. Significance level α used for detection is 5%. Results under the

independent noise model with finite variance and non-normal dependent noise model

are similar to the results reported in this table.
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Table 3: Size and Power of the Test under Stochastic Volatility†

Market quality parameter (q = 0.01%)

Frequency (nobs) σy = 0 σy = 0.15% σy = 0.30% σy = 0.45%

3 second (1200) 0.045 0.995 1.000 1.000

2 second (1800) 0.049 1.000 1.000 1.000

1 second (3600) 0.041 1.000 1.000 1.000

Market quality parameter (q = 0.05%)

Frequency (nobs) σy = 0 σy = 0.15% σy = 0.30% σy = 0.45%

3 second (1200) 0.028 0.787 0.999 1.000

2 second (1800) 0.038 0.900 1.000 1.000

1 second (3600) 0.077 0.989 1.000 1.000

Market quality parameter (q = 0.1%)

Frequency (nobs) σy = 0 σy = 0.15% σy = 0.30% σy = 0.45%

3 second (1200) 0.049 0.229 0.881 0.994

2 second (1800) 0.035 0.293 0.957 0.999

1 second (3600) 0.053 0.898 1.000 1.000

† This table reports performance (size (under σy = 0) and power (under σy ̸= 0)) of our

test for jumps in equilibrium prices in the presence of noise. The equilibrium prices

are generated from a jump diffusion process dP (t) = σ(t)dW (t) + Y (t)dJ(t) with a

stochastic volatility model, as described in Section 5. The test is based on the observed

data contaminated by noise U(ti) generated from the dependent noise model studied by

Engle and Sun (2006). We use their parameter estimates reported as significant at 5%.

In particular, we simulate noise series from U(ti) = θ0
∫ ti
ti−1

σdW (s)+θ1
∫ ti
ti−2

σdW (s)+

X(ti), where X(ti) is a normal variable with mean 0 and variance q2, and θ0 and θ1

are set at their estimates, which are 0.0861 and 0.06, respectively. The market quality

parameter q’s are chosen at various levels around values shown in our empirical studies

as well as Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell (2006). The

number of simulations is 6,000. σy in the table denotes the standard deviation of the

jump size distribution. Significance level α used for detection is 5%. Results under the

independent noise model with finite variance and non-normal dependent noise model

are similar to the results reported in this table.
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Table 4: Comparison with Lee and Mykland (2008)†

Jump Size relative to Market quality parameter (q = 0.05%)

Frequency (nobs) No jump σy = 0 σy = 1q σy = 2q σy = 3q

Tests LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2

3 second (1200) 0.012 0.034 0.025 0.059 0.287 0.320 0.816 0.786

2 second (1800) 0.008 0.030 0.022 0.071 0.412 0.483 0.940 0.920

1 second (3600) 0.010 0.046 0.034 0.091 0.658 0.709 0.995 0.988

Jump Size relative to Market quality parameter (q = 0.5%)

Frequency (nobs) No jump σy = 0 σy = 1q σy = 2q σy = 3q

Tests LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2

3 second (1200) 0.010 0.046 0.016 0.275 0.350 0.889 0.885 0.997

2 second (1800) 0.009 0.046 0.021 0.593 0.461 0.998 0.961 1.000

1 second (3600) 0.010 0.041 0.024 0.918 0.673 1.000 0.998 1.000

† This table reports the comparative performance of Lee and Mykland (2008), which is not devised to be

robust to noise, and of our jump test in the presence of noise. In particular, we compare the probability of

rejecting the null hypothesis of no jump. To save space, we call the test by Lee and Mykland (2008) “LM1”

and our test proposed in this study “LM2”. Both test results are based on the observed prices, which

combine both efficient prices generated from a jump diffusion process dP (t) = σ(t)dW (t)+Y (t)dJ(t) and

noise U(ti), which is generated from the dependent noise model studied by Engle and Sun (2006). These

authors estimated the model using tick-by-tick data on randomly picked U.S. individual equities, and we

use their parameter estimates reported as significant at 5%. In particular, we simulate noise series from

U(ti) = θ0
∫ ti
ti−1

σdW (s) + θ1
∫ ti
ti−2

σdW (s) + X(ti), where X(ti) is a normal variable with mean 0 and

variance q2, and θ0 and θ1 are set at 0.0861 and 0.06, respectively. The number of simulations is 6,000.

σy in the table denotes the standard deviation of the distribution of jump size Y (t). Significance level α

used for detection is 5%.
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Table 5: Optimal Block Size M for Preaveraging†

q Optimal C q Optimal C q Optimal C

q = 0.01% 1/19 q = 0.1% 1/18 q = 0.6% 1/9

q = 0.03% 1/19 q = 0.2% 1/16 q = 0.7% 1/9

q = 0.05% 1/19 q = 0.3% 1/16 q = 0.8% 1/9

q = 0.07% 1/18 q = 0.4% 1/9 q = 0.9% 1/8

q = 0.09% 1/18 q = 0.5% 1/9 q = 1.0% 1/8

† This table presents the optimal value for parameter C for block size selection in M ∼

C⌊n/k⌋1/2 as a function of q. These optimal values are searched by minimizing the abso-

lute distance between the true size and the empirical size of the test using simulated price

data. The number of simulations is 6,000 and the most general dependent noise model studied

by Engle and Sun (2006) is used to generate noise.
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Table 6: Descriptive Statistics of IBM Stock Trades during August 2007†

Trading Hour 9:30-10 10-11 11-12 12-13 13-14 14-15 15-16

Min No. of trades 494 884 622 553 556 626 1052

Max No. of trades 1107 1783 1510 1750 1505 1814 2323

Ave No. of trades 677 1184 1024 875 848 1056 1622

Std No. of trades 147 274 257 268 228 283 352

Min ∆ti (second) 1 1 1 1 1 1 1

Max ∆ti (second) 35 60 59 61 63 69 41

Ave ∆ti (second) 2.701 3.180 3.729 4.397 4.512 3.646 2.324

Std ∆ti (second) 2.865 3.636 4.253 5.236 5.313 4.245 2.433

Min ∆ log P̃ (ti) (1.0e-004) -0.17 -0.15 -0.14 -0.12 -0.15 -0.17 -0.18

Max ∆ log P̃ (ti) (1.0e-004) 0.18 0.16 0.14 0.12 0.17 0.13 0.16

Ave ∆ log P̃ (ti) (1.0e-004) 0.0105 0.0030 0.0019 -0.0018 -0.0013 -0.0020 -0.0033

Std ∆ log P̃ (ti) (1.0e-004) 0.0278 0.0197 0.0168 0.0165 0.0168 0.0172 0.0175

Min P̃ (ti) 108.76 108.08 108.18 107.44 106.94 107.50 106.58

Max P̃ (ti) 116.27 116.47 116.63 116.94 116.76 116.93 117.34

Ave P̃ (ti) 112.11 112.21 112.32 112.45 112.38 112.32 112.30

Std P̃ (ti) 1.002 1.001 1.001 1.001 1.001 1.001 1.002

† The table contains summary statistics for the number of trades, durations in seconds, log returns in basis points, and

prices in dollars for IBM stock during the whole month of August 2007. The total number of tick-by-tick observations

used is 167,595. Data are collected from the TAQ database and from transactions on the New York Stock Exchange

(NYSE). All trades before 9:30am or after 4pm and the first trade after 9:30am are discarded due to NYSE trading

hours and mechanisms. Each trading hour column, for example 11-12, includes information about trades after 11am

(inclusive) and before 12pm (exclusive). All trades that have multiple prices at the same time are counted once, and

the averaged price over the multiple trades is used.
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Table 7: Empirical Evidence on IBM Stock Trades during August 2007†

Trading Hour 9:30-10 10-11 11-12 12-13 13-14 14-15 15-16

Min q̂(%) 0.0109 0.0112 0.0091 0.0090 0.0104 0.0075 0.0069

Max q̂(%) 0.0649 0.0291 0.0244 0.0269 0.0244 0.0277 0.0287

Ave q̂(%) 0.0274 0.0183 0.0156 0.0145 0.0152 0.0152 0.0154

Std q̂(%) 0.0116 0.0054 0.0045 0.0042 0.0040 0.0051 0.0058

Min ξ̂n -9.2903 -0.6920 -2.2385 -1.4288 -2.3117 -2.8200 1.7079

Max ξ̂n -0.4648 7.5579 6.3403 15.1187 8.1149 9.6373 15.6170

Ave ξ̂n -5.2954 2.8050 2.1490 2.4305 1.7093 2.0877 6.4348

Std ξ̂n 1.9911 2.3601 2.5421 3.7502 2.6460 2.6626 4.1961

† The table contains summary statistics for estimated market quality parameter q, which is the dispersion

measure of market microstructure noise, as in Equation (5), and estimated Gumbel variables ξn, as

in Equation (14). We use IBM stock data during August 2007, and the total number of tick-by-tick

observations used is 167,595. Data are collected from the TAQ database and from transactions on the

New York Stock Exchange (NYSE). All trades before 9:30am or after 4pm and the first trade after 9:30am

are discarded due to NYSE trading hours and mechanisms. Each trading hour column, for example 11-12,

includes information about trades after 11am (inclusive) and before 12pm (exclusive). All trades that

have multiple prices at the same time are counted once, and the averaged price over the multiple trades

is used.
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